
IfhIII
st.pölten

Applied Research and Innovation in Computer Science

Hide the honey from the bees

An approach to hide honey systems to insiders

Master Thesis

For attainment of the academic degree of

Master of Science in Engineering (MSc)

submitted by

Paul Lackner, BSc

1910857502

in the

University Course Applied Research and Innovation in Computer Science at St. Pölten University of Applied Sciences

The interior of this work has been composed in LATEX.

Supervision

Advisor: Dipl.-Ing. Daniel Haslinger, BSc

Assistance: -

St. Pölten, June 29, 2021

(Signature author) (Signature advisor)

St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten,T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Ehrenwörtliche Erklärung

Ich versichere, dass

• ich diese Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt und mich sonst keiner unerlaubten Hilfe bedient habe.

• ich dieses Diplomarbeitsthema bisher weder im Inland noch im Ausland einem Begutachter/einer

Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Der Studierende/Absolvent räumt der FH St. Pölten das Recht ein, die Diplomarbeit für Lehre- und For-

schungstätigkeiten zu verwenden und damit zu werben (z.B. bei der Projektevernissage, in Publikationen,

auf der Homepage), wobei der Absolvent als Urheber zu nennen ist. Jegliche kommerzielle Verwertung/Nut-

zung bedarf einer weiteren Vereinbarung zwischen dem Studierenden/Absolventen und der FH St. Pölten.

Ort, Datum Unterschrift

iii

Kurzfassung
Honeypots sind eine bekannte Methode, um neue, bisher unbekannte Informationen über einen Angreifer

und Einblicke in dessen Angriffe zu erhalten. Es gibt abgeleitete Produkte, z. B.: Honeynets und Honey-

token, die als Honeysysteme bezeichnet werden. Alle diese Systeme haben gemeinsam, dass ihr ganzer

Zweck darin besteht, angegriffen zu werden, der Angreifer aber nicht weiß, dass er mit einem Honeysystem

kommuniziert. Honeysysteme emulieren Dienste und geben vor, ein echter Dienst zu sein, um einen An-

greifer dazu zu verleiten, mit ihnen zu kommunizieren und so (neue) Angriffsmethoden kennen zu lernen.

Honeypots sind ein einzelner Host oder Dienst, der Angreifer anlockt. Honeynets sind mehrere Honeypots

in einem Netzwerk. Diese Netzwerke können rein fiktiv sein oder sie können Produktionsnetzwerke klo-

nen, um authentischer zu sein. Honeywalls sind die Border-Gateways, die den Datenverkehr wie Firewalls

filtern und ihn entweder an das Produktionsnetzwerk oder das Honeynet weiterleiten. Honeytokens sind

ein wenig anders, da sie selbst keine Rechenleistung haben. Sie sind lediglich Daten in Form von Datei-

en, Einträgen innerhalb von Dateien oder Datenbankeinträgen. Honeytokens können einen bereits erfolgten

Einbruch signalisieren, wenn mehrere Einträge in Dateien außerhalb der Unternehmensdaten gefunden wer-

den (z.B.: fiktiver JFK-Eintrag in Krankenhausdateien). Da Honeysysteme am besten funktionieren, wenn

der Angreifer viel Zeit mit dem System verbringt, ist es notwendig, einen Dienst gut zu emulieren und ein

Honeysystem so gut wie möglich zu tarnen. Angreifer sind sich jedoch über Honeysysteme im Klaren und

wollen ihre Zeit nicht mit einem unrentablen Dienst verschwenden, und sie wollen auch nicht, dass ihre

Techniken aufgedeckt werden. Aus diesem Grund wurden mehrere Techniken zur Erkennung von Honey-

systemen entwickelt, die wiederum zu Techniken führten, die Honeysysteme noch besser tarnen.

Wie bereits erwähnt, wurden viele Arbeiten über Honeysysteme veröffentlicht, auch über das Verstecken

derselben. Aus offensichtlichen Gründen sind diese Forschungen noch nur sehr spärlich veröffentlicht wor-

den. Die einzige relevante Veröffentlichung stammt aus dem Jahr 2003 und ist daher stark veraltet. Firmen,

die ein solches Papier veröffentlichen würden, implementieren wahrscheinlich die in diesem Papier erläu-

terten Funktionen und würden damit ihr eigenes Konzept sprengen. Dieses Konzept könnte die Sicherheit

gegen Insider-Eindringlinge und Spionage erhöhen. Die Ergebnisse können einen Paradigmenwechsel be-

wirken, da sich die Organisationen wirklich darauf konzentrieren können, abtrünnige Mitarbeiter zu finden,

da “Nur Angreifer auf einen Honeypot zugreifen; normale Benutzer haben nicht die Absicht, ihn zu be-

v

nutzen”. Das bedeutet weniger Überwachungskosten für die Organisation und mehr Privatsphäre für die

Mitarbeiter. Da Honeysysteme nicht von normalen Anwendern, sondern nur von Angreifern genutzt wer-

den, sind keine Datenschutzklagen von Angreifern zu befürchten.

• Wie kann man ein Honeysystem nach innen verbergen?

• Welche Honeysysteme können nach innen versteckt werden?

• Vor welchem Personal kann ein Honeysystem versteckt werden?

• Ist es sinnvoll, ein Honeysystem nach innen zu verstecken?

Die Hypothese ist, dass alle Honeysysteme für alle Mitarbeiter in einem Unternehmen versteckt werden

können, außer für die, die dafür zuständig sind.

Der Ansatz zur Beantwortung dieser Fragen ist, wirklich einen Honeypot in einer Firma zu installieren und

zu versuchen, alle Mitarbeiter zu umgehen. Bei der Enthüllung wird der Mitarbeiter in die Materie ein-

geweiht und der Fehler wird dokumentiert. Die Mitarbeiter werden hinsichtlich ihrer Kenntnisse der (IT)-

Infrastruktur in Gruppen eingeteilt und separat beobachtet, ob und wann sie den Honeypot entdecken. Um

ein gutes Ergebnis zu erzielen, muss wahrscheinlich der gesamte Einsatzprozess eines Honeysystems geän-

dert werden. Da diese Honeysysteme nicht auf Angreifer von außen, sondern auf Insider abzielen, ergeben

sich einige weitere Fragen zum Prozess. Diese Herausforderungen werden während der Forschung auftau-

chen und müssen während des Projekts gelöst werden, was das Problem komplex und schwierig macht.

Diese Arbeit erstellt eine Bewertung der Mitarbeitergruppen und Assets, um Erkenntnisse über deren Be-

teiligung an einem solchen Projekt zu gewinnen. Sie stellt auch ein Experiment vor, wie diese formulierten

Hypothesen auf Organisationen in der realen Welt anwendbar sind und beantwortet die Fragen, wie man

welches Honeysystem vor wem verstecken kann und ob es sinnvoll ist, dies zu tun.

vi

Abstract
Honeypots are a well known method to gain new, previously unknown information about an attacker and

visibility about their attacks. There exist derived products, e.g.: honeynets and honeytoken, which will be

described as honey systems. All these systems have in common that their whole purpose is to be attacked, but

to leave the attacker unaware of his communicating with a honey system. Honey systems emulate services

and pretend to be a real service to lure an attacker to communicate with it and therefore to learn about

(new) attacking methods. Honeypots are a single host or service luring attackers. Honeynets are multiple

honeypots in a network. These networks could be purely fictious or they can clone production networks

to be more authentic. Honeywalls are the border gateways, filtering traffic like firewalls, and routing the

traffic either to the production network or the honeynet. Honeytokens are a little bit different, as they have

no calculation power itself. They are just data in form of files, entries within files or database entries.

Honeytokens can signal an already happened intrusion, when several entries in files are found outside of

company data (e.g.: fictious JFK entry in hospital files). As honey systems work best if the attacker spends

a lot of time with the system, it is necessary to emulate a service good and disguise a honey system as good

as possible. However, attackers are aware of the possible existence of honey systems and do not want to

waste their time with a non-profitable service and they do not want their techniques getting revealed, which

is why multiple honey system detection techniques are developed, which lead to newer techniques for honey

systems to better avoid detection.

As already mentioned, a lot of papers have been published regarding honey systems, also about hiding them.

This research about how to implement them in a concrete surrounding still has never been published because

of obvious reasons. The only relevant publication dates to the year 2003 and is therefore highly outdated.

Companies publishing such a paper would thereby probably bust their own concept of implementing these

features. This concept could increase security against insider intrusion and espionage. The results can shift

paradigms as the organisations can really focus on finding rogue personnel, as “Only attackers access a

honeypot; normal users have no intention of using it”. This means less surveillance costs for organisation

and more privacy for employees. As honey systems are not used by normal users but only by attackers, no

privacy concerns are to appear.

Honey system primarily address strangers, attackers from outside of the company. These can cause severe

vii

damage to a company, but insiders have a better plan of a company and how to disguise security patterns.

Honey systems are not publicly used as monitoring system to protect against internal attacks. As insiders

usually know the company structure it is difficult to implement a shadow system, only selected personnel

know about. A shadow system can furthermore attract attention of an inside intruder, which makes honey

system valuable as they only address attackers. The research questions therefore are:

• How to hide a honey system to the inside?

• Which honey systems can be hidden to the inside?

• From which staff can a honey system be hidden?

• Does it make sense to hide a honey system to the inside?

The hypothesis is that all honey systems can be hidden to all staff in a company, except to the ones being in

charge of it.

The approach to answer these questions is to really install a honeypot in a company and try to circumvent

all of staff. When being disclosed, the staff member will be introduced to the matter and the error will

be documented. Staff will be divided into groups regarding their knowledge of the (IT)-infrastructure and

separately watched if and when they detect the honeypot. To achieve a good result, the whole deployment

process of a honey system probably need to change. As these honey systems do not target outside attackers

but insiders, several further questions about the process appear. These challenges will appear during the

research and needs to be solved during the project which makes the problem complex and difficult.

This work creates an evaluation of the staff groups and assets to provide knowledge about their involvement

in such a project. It also presents an experiment on how these formulated hypothesis apply to real world

organisations and answers the questions on how to hide which honey system from whom and does it make

sense to do so.

viii

Contents

1 Introduction . 1

1.1 Thesis Outline . 3

2 Prerequisites . 5

2.1 Terminology of Honeysystems* . 5

2.1.1 Honeypot . 5

2.1.2 Honeynet . 5

2.1.3 Honeywall . 6

2.1.4 Honeytoken . 7

2.2 Properties of Honeypots* . 7

2.2.1 Types . 7

2.2.2 Use Cases . 8

2.2.3 Advantages and Disadvantages of Honeypots . 9

2.3 Implementation Examples of various Honey Systems* . 10

2.3.1 Honeynets as a NIDS . 10

2.3.2 Honeywall . 10

2.3.3 Honeytokens as an Active Defense . 11

2.3.4 Real world implementations . 12

2.4 Mock the Bear, Manipulate the Honey* . 13

2.4.1 Find the Bear, Monitor the Honey . 13

2.4.2 Detect the Honey . 13

2.4.3 Hide the Honey . 16

2.5 Legal Affairs and Privacy* . 17

2.6 Threat Information Exchange . 17

2.6.1 STIX . 17

ix

Contents

2.6.2 TAXII . 18

3 Related Work . 19

4 Approach . 21

4.1 Personnel . 21

4.1.1 CEO / Secretary . 21

4.1.2 Lawyer . 22

4.1.3 Accounting and Procurement . 22

4.1.4 IT Administrator . 22

4.1.5 DevOps . 23

4.1.6 Security . 23

4.1.7 Product owner . 23

4.1.8 Random passerby . 23

4.1.9 Machine Operator . 23

4.1.10 Data Protection Officer . 24

4.1.11 CIO . 24

4.1.12 CISO . 24

4.1.13 Auditor . 24

4.1.14 Personnel in the Audit . 24

4.1.15 Documentation Manager . 25

4.1.16 Direct Supervisor . 25

4.2 Properties of a Network Device . 25

4.2.1 Presence Assets . 25

4.2.2 Network Assets . 25

4.2.3 Project assets . 27

4.3 Theoretical Information Obligations . 27

4.3.1 Knowledge about true purpose . 27

4.3.2 Knowledge about fake purpose . 29

4.3.3 No knowledge . 30

4.4 Hiding or disguise a network device . 30

4.4.1 Hide from security services . 32

4.4.2 Hide Documentation . 34

x

Contents

4.5 Goals . 35

4.5.1 External attacker . 35

4.5.2 External attacker, already operating from the inner network 35

4.5.3 Internal attacker . 35

4.6 Possible project assignee groups . 36

4.6.1 Single person . 36

4.6.2 One team . 36

4.6.3 Multiple teams . 37

4.7 Classifing Honey Systems about their Hiding Potential . 37

4.8 Busted? . 38

4.9 Busted! . 39

5 Experiment . 41

5.1 Setup . 41

5.2 First contact . 48

5.3 Second contact . 49

5.4 Third contact . 50

5.5 Qualitative evaluation . 51

5.6 Quantitative evaluation . 53

6 Conclusion . 55

6.1 Future Work . 56

List of Figures . 57

List of Tables . 58

Glossary . 61

Bibliography . 65

xi

1 Introduction

The consecutive race between a red team and a blue team, therefore between attackers and defenders in

terms of computer security won’t settle down in the next years. The attackers will always be ahead of the

defenders when it comes to exploit systems. To minimize the advance of the attackers many technical and

organisational improvements have been made in the last years. Organisational methods like a software se-

curity lifecycle and better programming languages improved security of software applications and operating

system (OS) in general, vulnerabilities found by testing methods and security researchers are fastly patched,

and public exploits and coherent mitigation are notified. To detect exploits and attack techniques, honey

systems, especially honeypots are widely used in a research and productive context1. Honeypots enable

defenders to create profiles about attackers2:

• where they come from

• their technological level

• how they access a device

• what they are interested in

• how well the existing security already works

Honey systems have an efficient detection method, so only a few are needed to get a large dataset of attacks3,

therefore most of the security sales companies operate a honeynet4 to generate security patches for the public

while local companies operate their own honeypots to detect targeted attacks5.

Honeypots are no new thing [1], but still relevant as they are the first line of defense to detect attack tech-

niques and a reliable instrument to detect intruders. Honey systems vary from simple to complex imple-

mentations and can grant attackers a variety of interaction levels while defenders get a variety of insights

1https://www.businesswire.com/news/home/20190516005157/en/
2https://www.kaspersky.com/resource-center/threats/what-is-a-honeypot
3https://www.techrepublic.com/article/kaspersky-honeypots-find-105-million-attacks-

on-iot-devices-in-first-half-of-2019/
4https://dtag-dev-sec.github.io/mediator/feature/2018/02/23/potherder.html
5https://cybernews.com/security/honeypots-how-security-teams-use-bait-to-protect-

against-cyber-threats/

1

https://www.businesswire.com/news/home/20190516005157/en/
https://www.kaspersky.com/resource-center/threats/what-is-a-honeypot
https://www.techrepublic.com/article/kaspersky-honeypots-find-105-million-attacks-on-iot-devices-in-first-half-of-2019/
https://www.techrepublic.com/article/kaspersky-honeypots-find-105-million-attacks-on-iot-devices-in-first-half-of-2019/
https://dtag-dev-sec.github.io/mediator/feature/2018/02/23/potherder.html
https://cybernews.com/security/honeypots-how-security-teams-use-bait-to-protect-against-cyber-threats/
https://cybernews.com/security/honeypots-how-security-teams-use-bait-to-protect-against-cyber-threats/

1 Introduction

depending on the interaction levels. Honeypots may be standalone systems as well as implemented into

existing networks. This variety of possibilities and the low entry level for administrators and researcher as

well as the effectiveness of honey systems grants the high popularity.

As common defense techniques apply good against common attackers, insider or attackers already being

persistent in your network are not in a common security scope6. This work aims to increase security against

insider threats or attackers already operating from the inside via already established honey system concepts.

These concepts although have only targeted external attackers. Therefore four major research questions are

stated:

1. How to hide a honey system to the inside?

2. Which honey systems can be hidden to the inside?

3. From which staff can a honey system be hidden?

4. Does it make sense to hide a honey system to the inside?

To answer these questions, some other non-obvious, but related questions arise, which need to be answered

in order to answer the major questions:

1. What to do when being found by an employee?

2. Which people need to be involved?

3. How to maintain the system?

4. How to physically hide the system? Will it be a VM on a hypervisor?

a) Can already existing devices be used (e.g.: climate sensors)?

b) Can already existing processes be used to disguise the real purpose of a device?

c) Can a device be placed in a rack of another department (so nobody feels in charge of it)?

5. How and where to log?

6. How to hide wanted traffic (management, logging, etc.)?

7. How to hide malicious traffic (If honeypot traffic is not visible to security staff)?

8. How and where to document all of that?

Answering these questions will give an understanding of the underlying problems and will bring research

nearer to increase security against these attackers.

6https://www.dni.gov/files/NCSC/documents/news/20210319-Insider-Threat-Mitigation-

for-US-Critical-Infrastru-March-2021.pdf

2

https://www.dni.gov/files/NCSC/documents/news/20210319-Insider-Threat-Mitigation-for-US-Critical-Infrastru-March-2021.pdf
https://www.dni.gov/files/NCSC/documents/news/20210319-Insider-Threat-Mitigation-for-US-Critical-Infrastru-March-2021.pdf

1 Introduction

1.1 Thesis Outline

This thesis is organised in several parts which will be shortly described now.

In chapter 1 the topic, problems, challenges and motivation are introduced as already read.

Prerequisites and fundamental knowledge are described in chapter 2. It defines the terminology of various

honey systems, their properties and use cases and introduces some implementation examples. It concludes

with a short overview about some legal questions and an introduction to a commonly used threat information

exchange.

In chapter 3 the related work is listened and shortly summarised.

The theoretical approach and some thoughts about the research questions are made in chapter 4. It describes

the concept of hiding or disguising a honey system to the inside and examines it from different points of

view.

An experiment is described and discussed in chapter 5. The experiment implements one of the concepts of

chapter 4 and examines its applicability to the wild.

Last but not least chapter 6 concludes this work and the research questions. It also provides recommenda-

tions for implementations as well as further research that needs to be done.

3

2 Prerequisites

To basically understand the purpose of a honey system, the following paragraphs may be helpful. They

explain the basic terminology, purposes and implementation methods of honey systems. The last paragraphs

explain some legal aspects, as well as a threat exchange system. The following sections (2.*) marked with

an asterisk are taken from a previously published work of myself [2].

2.1 Terminology of Honeysystems*

Honeypots, honeynets, honeywalls, and honeytoken all serve the same purpose, namely to detect intruders

and analyse their intrusive behaviour. No legitimate user would ever access a honey system [3], even a

connection attempt is considered an attack [4].

2.1.1 Honeypot

Invented in the 1990s, a honeypot is the best known application of the honey systems [1]. It is a sin-

gle host, network device or daemon [4] luring potential attackers to distract them from valuable network

ressources [5]. “A honeypot is a security resource whose value lies in being probed, attacked, or compro-

mised.” [6]. “A honeypot is a resource which pretends to be a real target.” [4]. A honeypot itself is not a

security fix but helps fixing issues by gaining information about attacks. “The main goals are the distraction

of an attacker and the gain of information about an attack and the attacker” [7].

2.1.2 Honeynet

A honeynet is a network of multiple honeypots [8], [9]. Analogous to honeypots, the entire network is

to be attacked. The honeynet is not emulated and therefore can be a copy of the production system [10].

“Honeynets represent the extreme of research honeypots. They are high interaction honeypots, which allow

learning a great deal; however they also have the highest level of risk. Their primary value lies in research

and gaining information on threats that exist in the Internet community today. Little or no modifications

5

2 Prerequisites

Figure 2.1: A honeynet, which consists of honeypots, duplicating the production system and being separated

by a honeywall. The honeywall routes legimite users to the production network (white hosts)

and attackers to the honeynet (yellow hosts).

are made to the honeypots of the honeynet to provide a plausible copy of the production net. This gives

the attackers a full range of systems, applications, and functionality to attack. From this it can be learnt a

great deal, not only their tools and tactics, but also their methods of communication, group organization,

and motives” [8]. Low and high interaction honeypots are further explained in section 2.2. Figure 2.1 shows

an example of a honeynet.

2.1.3 Honeywall

As also visualised in Figure 2.1, a honeywall is the perimeter border between honeynets and productive sys-

tems, although the term honeywall is not clearly defined. Some literature describe it as a gateway [10], some

describe it as a layer-2 or layer-3 filtering bridge firewall/Network Intrusion Detection System (NIDS) [11].

It is also not clear whether the term “honeywall” refers to the product name of The Honeynet Project or the

basic functioning in honey environments itself. The product honeywall is based on iptables rules, Snort,

and Snort-inline [11]. Other implementation use similar tools. In this paper, the term honeywall refers to a

general implementation. Honeywalls support interception of SSL connections and decide if incoming traffic

is malicious and therefore needs to be redirected to a honeynet, or if it is valid and therefore redirected to

the productive system.

6

2 Prerequisites

2.1.4 Honeytoken

Unlike honeypots or honeynets, honeytokens are just data in the form of files, entries within files, or special

strings [10] [12]. The data looks valid even though it is fictional and does not have any production use.

The files are monitored in case of their modification. Data and strings are monitored as well, e.g. via

Google Alerts. Google Alerts, a web service, notifies a user if a string appears in Googles search. Therefore,

when a user is notified about a published honeytoken, it is likely that this honeytoken has been stolen and a

successful intrusion occurred. A paper defines the following honeytoken properties [13]:

• Believable: A honeytoken looks like valid data.

• Enticing: A honeytoken lures an attacker.

• Conspicuous: A honeytoken is easily found.

• Detectable: Interacting with a honeytoken generates an alert.

• Variability: Various honeytoken do not contain the same information that create a connection between

them.

• Non-interference: A Honeytoken does not interfere with desired data or system interactions.

• Differentiable: A legitimate user can differentiate between a honeytoken and actual data while an

intruder cannot.

2.2 Properties of Honeypots*

Another survey [14] defines honeypots as devices which distract attackers from valuable machines, provide

early warnings about attacks and allow in-depth examination of adversaries during and after the exploitation.

To this end, it is in the interest of a defender that an attacker interacts with the honeypot over an extended

period of time, while being closely monitored. There are several types [6] and several use cases [14] of

honeypots. While each type can be used in each use case, there are different advantages and disadvantages

for each honeypot configuration.

2.2.1 Types

A low interaction honeypot has a very limited set of commands available for an attacker. While there is

not much information one can obtain about attackers, the risk of damaged production systems due to a

successful attack through that honeypot is also low [15].

A high interaction honeypot has the goal to obtain a maximum amount of information about the attacker.

The honeypot allows itself to be used, tampered with, or even be damaged. High interaction honeypots often

7

2 Prerequisites

are a clone of a production server. The goal is mainly to learn about novel attack techniques [15]. When

deploying a high interaction honeypot, considerations about an extremely resilient monitoring system have

to be made, to obtain authentic information of a partially compromised honeypot.

A medium interaction honeypot is in between of a low and a high interaction honeypot. While a low

interaction honeypot only provides a limited set of commands and a high interaction honeypot grants access

to the OS of the honeypot, a medium interaction honeypot has a significant higher amount of available

commands and interactions but does not grant any access or interaction with the OS directly. Medium

interaction honeypots emulates a service [14].

2.2.2 Use Cases

Widely known literature regards two use cases; research and production. This paper introduces a third use

case: vulnerability scan.

The idea of a research honeypot is to provoke an attack and learn about the attacker. The purpose of a

research honeypot is to learn about new techniques and tools of attackers. It also serves to learn about new

combinations of tools attackers use to tamper with systems. There is no intention to defend the system

against attackers [15].

A production honeypot is only used in productive networks to obtain information about attackers invading

the productive network. The purpose is not to gain maximum intel about the attacker but to detect the interest

of the attacker. Spitzner and Schneider defined three interest groups within security issues: Detection,

Prevention and Response [15]. A honeypot can provide value to Detection and Response.

HosTaGe constitutes a further use case, the non intrusive vulnerability scan [16]. HosTaGe is a honeypot

for mobile phones which scans public wireless networks. It detects malware spreading from devices within

the same network and checks the basic security of public networks. It is considered to be a honeypot-

to-go. HosTaGe also supports Industrial control system (ICS) protocols, making it relevant for industrial

companies [17].

When implementing a honeypot, several problems should be considered [14]:

• Data types: Data provided should look authentic to gain the attention of an attacker but it should not

be possible to harm the company with this data.

• Uplink liability: Honeypots can and will get compromised, which enables an attacker to attack other

systems with it. Considerations about placing a honeypot in separate networks, maybe even a dif-

ferent public IP range than the production network of the enterprise have to be made (see more in

section 2.5).

8

2 Prerequisites

• Build your own honeypot?: Most of the honeypot frameworks are open source and therefore cus-

tomisable. The established honeypots professionally emulate the services they offer, when configured

correctly. Additional services have to be programmed by the respective end-users themselves.

• Hiding: A honeypot should not obviously appear as a honeypot (see subsection 2.4.3).

Some researcher created a method to evaluate the potency of a honeynet which can be deployed to any

honeynet [18].

2.2.3 Advantages and Disadvantages of Honeypots

Honeypots have particular advantages over traditional NIDS and network security approaches [14]:

• Small data sets: Only traffic addressing the honeypot is being observed. This can also be a disadvan-

tage however.

• Minimal resources: Only attackers access a honeypot; normal users have no intention of using it.

There is not always the need to use state-of-the-art hardware as the system does not have to carry

normal production traffic and interactions.

• Simplicity: Honeypots, especially low interaction honeypots, are “simple and flexible”. They feature

easy deployment and update routines as they do not offer the whole functionality of the original

service.

• Discovery: Honeypots can help discover new tactics and tools directed at them.

Naturally, honeypots also have some disadvantages. To decide if a honeypot is the right device to monitor

one’s network, one has to consider the following points [14]:

• Limited Vision: Only the traffic that hits the target is visible and analysed. Traffic that does not target

the honeypot in any way will not be detected. This can also be an advantage.

• Discovery and Fingerprinting: Honeypots can either emulate a service or provide the service itself.

All services have different fingerprints in terms of reaction time and properties when using different

network stacks, operating systems, and hardware. Nevertheless some fingerprints can reveal the im-

plementation of a service. If a service is emulated, the fingerprint can reveal the emulating service

(e.g.: honeypot tool). It might be possible to distinguish a real service from a honeypot from network

meta data.

• Risk of takeover: A honeypot may be used as an attacking device if it is taken over. So a honeypot

should be monitored to determine, if it is still working as intended or already got compromised.

9

2 Prerequisites

2.3 Implementation Examples of various Honey Systems*

Honey systems are used in various ways with various goals to achieve. The following subsections enumerate

some examples of the possibilities.

2.3.1 Honeynets as a NIDS

A Network Intrusion Detection System is a system which detects known attacks [19] and warns adminis-

trators mostly through a Security Information and Event Management (SIEM) tool about incidents. During

a project a honey net was created through container orchestration and Conpot as a honeypot backend [20].

They define three modules to achieve an easy-to-work-with honeynet: the deployment module deploys a

honeypot as a container with the desired properties. The management module manages the deployed con-

tainer in terms of power management and honeypot properties. The intrusion detection module is the brain

of this system. It processes traffic provided by the honeypots, trying to find attack patterns. Using a Support-

Vector-Machine (SVM) algorithm the traffic data, especially the meta data (connection duration, protocol

type, number of source bytes, number of destination bytes, whether it comes from the same host, the number

of wrong segments, the number of urgent packets, etc.) is used to train a model, which was initally trained

with the KDDCUP991 data set (a data set from 1999). The intrusion detection module uses this model to

create alerts. They argue, since every connection to a honeypot is an attack per definition [4], this is a way

to determine whether an attack is just random noise or a targeted attack against the system and to achieve

a better detection rate with a lower amount of false positives [20]. The detection rate of 89% still remains

low compared to common detection rates using the SVM algorithm. A newer approach describes a similar

concept [21].

A different approach describes a honeynet out of high interaction honeypots to detect a botnet in its creation

phase using machine learning to detect hidden patterns [22]. Furthermore, honeypots can organize them-

selves with a (private) blockchain to act and save data distributed and be more resistant to takedowns [23].

2.3.2 Honeywall

As seen in Figure 2.1, a honeywall is the perimeter border between a honeynet, a possible production net,

and the internet. Its three main goals are: data capture, data control, and automated alerting. This is achieved

by combining a layered firewall with NIDS/IPS and a monitoring tool. The honeywall decides if traffic is

malicious or valid, and helps to correlate traffic from or to various honeypots in the honeynet [24]. A problem

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

10

2 Prerequisites

is the generation of good training material. To generate malware traffic signatures which let the honeywall

decide if traffic is valid or malicious, malware traffic needs to be routed to the honeynet by the honeywall.

Obviously, this is a chicken-and-egg problem, which can be mitigated by reversing the function of a NIDS.

While a NIDS usually works by block-listing malicious traffic [19] it can also pass-lists legitimate traffic:

All known legitimate traffic is sent to the productive network, everything else to the honeynet, where traffic

is used to generate detection patterns for the honeywall.

2.3.3 Honeytokens as an Active Defense

Honeytokens could be used as an active defense [3]. An explanation of this statement necessitates an under-

standing of the concepted different zones, visualised in Figure 2.2.

Zone 0 acts as the perimeter zone and may contain a firewall (honeywall), NIDS, and Web Application

Firewall (WAF). Honeytokens are not placed there, because they are meant to address attackers who are

able to circumvent these defense technologies. Although, on the perimeter border, an IDS rule can detect

the usage of a honeytoken [25].

Zone 2 represents the web application. Honeytokens are placed here as they enable the application to react

just-in-time to an attack. A URL parameter (https://example.com/site.php?admin=false) is an example of

how applications react to the usage of honeytokens. When accessing the site with the parameter admin=true,

the application knows to call a specific function defending against an attack. A further implementation is a

web application honeypot to track bot crawls on a website [26].

Zone 1 and 3 represent the web server and possible databases. These zones contain classic file or database-

entry tokens to collect as much data as possible about the attacker if zone 2 is compromised. A webserver

for example, storing honeytokens as files, can monitor them through the meta data. An exfiltration of these

honeytokens is noticed by monitoring the file metadata, or by creating a trigger for the usage of a query for

these honeytoken database entries.

The higher the zone number, the further an attacker has advanced into a system.

An example of the usage of honey token and the reaction of webservers follows: [3]:

• Session manipulation: If an attacker accesses a honeytoken, the session in use may be terminated

or isolated into a sandbox mode. Also, every or randomly chosen requests may be answered with

a HTTP 200 OK status code to feed the attacker with false information. A request rate limiting or

intentional connection timeouts may further slow down the attacker.

• Generated vulnerabilities: Once the system detects attackers it dynamically generates vulnerabilities

to “keep the attackers happy” and to gain more time to study the attackers.

11

2 Prerequisites

Figure 2.2: An overview of the zone concept of Petrunić in terms of honeytoken defense. Zone 0 represents

the perimeter border where no honeytoken is placed. Zone 1 is the web server which hosts the

web application. Zone 2 portrays the web application, which reacts directly to an attacker when

using a honeytoken. Zone 3 is the database. The database hosts honeytokens as database entries.

It can trigger actions when a specific entry is accessed [3].

• Attack the attacker: The generated vulnerabilities can deface attackers and reveal their identity by

forcing them to establish a direct communication channel [27] [3].

• robots.txt: Fake URLs and entries in the robots.txt help to identify attackers and malicious web spi-

ders. robots.txt defines whether a web spider is allowed to index an URL or is not. When one of the

fake URLs in robots.txt is accessed by either an attacker or malicious web spider, a specific reaction

may get triggered.

Honeytokens are either handcrafted or generated through a tool like HoneyGen [28]. Like honeypots, hon-

eytokens slow down attackers [29], and feed them with false information2.

2.3.4 Real world implementations

Honey systems are already used by different companies with different implementations. While companies

usually do not publish their use of honey systems, some are well known to use them and even openly admit

to use honey systems. Nevertheless, enterprises do not publish the exact implementation and version of their

honey system.

2https://arstechnica.com/information-technology/2017/05/macron-campaign-team-used-

honeypot-accounts-to-fake-out-fancy-bear/

12

https://arstechnica.com/information-technology/2017/05/macron-campaign-team-used-honeypot-accounts-to-fake-out-fancy-bear/
https://arstechnica.com/information-technology/2017/05/macron-campaign-team-used-honeypot-accounts-to-fake-out-fancy-bear/

2 Prerequisites

Many telecom providers, as well as security enterprises (firewall/NIDS manufacturers, antivirus/HIDS man-

ufacturers, etc.) sustain many honeypots in a honeynet. They are distributed worldwide and create threat

information and an attack map, among other things. Associations hide their critical infrastructure with honey

systems and improve security efforts with the obtained information. Also, hospitals and medical facilities

test the integrity of their personnel with a bogus patient record, for example a honeytoken called “John F.

Kennedy” [30]. Table 2.1 shows a comparison of various honeypots.

2.4 Mock the Bear, Manipulate the Honey*

When operating any honey system there is always the risk of a compromised system as well as a defaced

honey system. Either way, a honey system should work as intended. Monitoring and logging tools must be

resistant to attacks to still record trustworthy information about an attack and an attacker. Also, attackers

are capable to detect honey systems with various methods. This demands various hiding methods. The

following paragraphs explain monitoring and logging methods, ways to distinguish honey systems from

productive systems, and methods to mitigate a detection and to hide honey systems.

2.4.1 Find the Bear, Monitor the Honey

Various ways of monitoring honeypots exists. When honeypots became popular, SEBEK was a popular

monitoring tool, superseded by XEBEK, a SEBEK-like tool optimised for virtual machines. These are

data/traffic capture kernel modules which send data to a central logging server to monitor and visualise

events [31]. Nowadays, standard tools like syslog and Trusted Automated eXchange of Indicator Informa-

tion (TAXII) in combination with a central monitoring server are more common [32]. Since a honeypot is

accessed by an attacker, there has to be a focus on log authenticity. Sending logs immediately to a remote

logging station and not storing them locally on a compromised honeypot is part of a good log handling.

2.4.2 Detect the Honey

A recent paper describes a method to monitor and analyse botnets with honeynets [34]. To get authentic

results, considerations must be made on the fact, that many different ways of detecting honeypots have

been developed by attackers to avoid honeypots. A quite old paper describes a way to detect honeypots in

a botnet [33]. The underlying problem is still present: “Should a honeypot attack other systems to look

authentic?” A botnet is a network of infected machines controlled by a bot controller [35]. A bot controller

commands a new bot to attack a list of hosts. This list of hosts or addresses include sensors, controlled by the

13

2 Prerequisites

Honeypot Host Service Description

ADBHoney Linux ADB emulates an Android Debug Bridge

Conpot Linux

ICS/Supervisory Control

and Data Acquisition

(SCADA)

emulates different ics protocols like modbus

Cowrie Linux ssh, telnet against brute-force attacks

dionaea Linux shellcodes successor of Nepenthes

GhostUSB Windows USB storage
to detect malware trying to spread over USB

drives

Glutton Debian any network port answers to any network communication

Heralding Linux

ftp, telnet, ssh, rdp,

http(s), pop3(s), imap(s),

smtp, vnc, postgresql,

socks5

gathers credentials

HoneyD Linux *
modular honeypots; one of the oldest honey-

pot implemetations; no longer developed

HoneyDoc python Honeytoken
creates fake documents and tracks who opens

them

Honeytrap
Debian &

MacOS
*

decentralized honeypot framework to create

honeynets

HosTaGe Android any network port vulnerability scan of public wireless network

KFSensor Windows any network port proprietary enterprise honeypot

mailoney Linux SMTP Detects attacks on SMTP services

medpot Linux HL7, FHIR
honeypot for medical protocols (Health Level

7, Fast Healthcare Interoperability Resources)

RDPY Linux RDP RDP implementation in python

SNARE &

TANNER
Linux http(s)

SNARE acts as network agent, TANNER as

analysis and classification tool

T-Pot Linux *
T-Pot is a collection of various honeypots and

put together

Table 2.1: Comparison of various honeypot implementations.

14

2 Prerequisites

Figure 2.3: Visualisation of a bot controller trying to verify if the infected host is a normal infected machine

or an infected honeypot. The bot controller commands the infected machine (bot) to attack a list

of hosts including a sensor. The bot attacks the given list of computers and sends a “Mission

accomplished” to the bot controller. A honeypot would not attack other hosts but reports a

“Mission accomplished” to the bot controller. The sensor reports to the bot controller that it got

attacked by that specific host. The bot controller correlates reports of the sensor with his list of

probably infected machines and verifies the infection and is thus able to identify honeypots [33].

15

2 Prerequisites

attacker, which report every attempt to contact them to the bot controller. When the bot controller receives

an IP address, to which the controller commanded an attack before, it is assumed a valid bot, otherwise

it might be a honeypot trying to sanitize its outgoing traffic to not attack others [36]. This introduces the

dilemma of sanitising outgoing traffic due to legal affairs and getting authentic results. For more information

on why honeypot operators sanitize outgoing traffic, see section 2.5. Figure 2.3 shows this scenario.

2.4.3 Hide the Honey

Honeypots, honeynets, honeywalls, and honeytokens need to be concealed from the attackers. The first

step to hide them is to determine the type of attacker they are hidden from. Usually, “attacker” means

everything outside of an organisation or company. To hide a honeypot from the outside, it should behave

like the emulated service in terms of user interaction. This means that the front-end and user responses,

especially the reaction time of the service, remain the same as the original service [37]. The back-end can

be adjusted to the operators’ needs. In the best case, an attacker does not know about the structural design

of an organisation, so little to no management effort is required to hide honey systems.

The emulation of several things, including the network stack and processing must be authentic to the real

service to disguise the honeypot [37]. Network scanning tools like nmap3 look for protocol quirks to identify

the exact implementation. Depending on the purpose, honeypots should or should not emulate the exact

quirks. Various methods to properly emulate services are suggested [25]:

• Vulnerability emulation: Only the vulnerable part of a service or OS is emulated. Nepenthes [38] and

PHP.HoP [25] uses this technique. This obviously works only for already known vulnerabilities!

• Connection tarpitting: Tarpitting in terms of honeypots means delaying network traffic and service re-

sponses. Network traffic may be delayed by manipulation of the window flag in Transmission Control

Protocol (TCP/IP) packets. Service responses may be delayed deliberately by waiting milliseconds

before sending them. Appropriate waiting times might help to make a honeypot more authentic; e.g.

sending a command to a machine via a controller implies waiting for a response from a controller

which waits for the response of the machine, which takes time. Immediately sending a response

likely unmasks a honeypot.

• Traffic redirection: Suspicious traffic gets redirected to a honeypot. For example, a connection es-

tablishment to an unused IP or suspicious traffic, detected with help of a NIDS, can be redirected

to a honeypot. However, a NIDS only detects already known attack vectors and needs to know the

network topology or at least the used IP addresses to detect unused IP addresses.

3https://nmap.org/

16

https://nmap.org/

2 Prerequisites

The techniques described here hide a honey system from an external attacker. Hiding honey systems from

personnel or specific groups of personnel of an organisation or company was not found in literature.

2.5 Legal Affairs and Privacy*

When operating a honeypot one has to consider several legal aspects.

Liability is an important factor to consider. Activity and traffic from the honeypot is linked to the organi-

sation hosting the honeypot. If a honeypot is compromised and attacks other systems or acts as an illegal

market place for example, there are legal consequences for the organisation. Especially neglected honeypots,

which are not monitored regularly, are a popular target. To prevent consequences, aside from the technical

aspects, the goal and methods of a honeypot should be documented in detail [14].

The right to monitor is competitive to the right of privacy. As this tension is part of the daily life of an

IT-security engineer, this applies to honey systems as well. Most countries already passed laws regarding

privacy matters, such as the Fourth Amendment, the Wiretap Act, the Patriot Act, and the Freedom Act

in the USA and the General Data Protection Regulation (GDPR) in the EU. A decision, whether and how

information can be logged, is made regarding these laws [14]. A profound analysis of privacy matters,

concerning honey systems, has already been done based on EU laws, already including GDPR, in 2017 [39].

2.6 Threat Information Exchange

All these different systems result in a variety of logging formats. To standardize the logging, to be able to

combine logs of different honeypots and other network components, and to analyze and visualize them, one

of the innovations was the specification of Structured Threat Information eXpression (STIX) and TAXII.

The most common logging method used, apart from STIX and TAXII, is syslog.

2.6.1 STIX

STIX [40] is a language to standardize the specification, capture, characterisation, and communication of

cyber threat information. STIX defines several different object domains (threat actor, incident, exploit,

campaign, indicator, etc.) and relationship roles (relationship, sighting) which describe the relationship

between various object domains and their frequency of occurrence.

17

2 Prerequisites

2.6.2 TAXII

TAXII [41] is a standardized set of services and messages to exchange threat information. TAXII defines

different network components, roles and (Consumer, Producer) concepts as well as various sharing models

between peers [42]:

• TAXII Data Feed is a collection of threat information in STIX format.

• TAXII Message is a request or response of one entity to another.

• TAXII Message Exchange is a collection of requests and responses between two parties to a specific

subject (comparable to an email conversation).

• TAXII Service is a functionality hosted by an entity that can be accessed from another entity.

• Hub and spoke: A hub officiates as the center and handles requests from spokes (peers). It also

updates all other peers. Communication occurs only between a spoke and the hub.

• Source and subscriber: A source is the center and broadcasts all information to the subscribers. Con-

nections from the subscriber to the source are not allowed.

• Peer to peer: Every peer in the system can communicate with every other peer. Information flows in

both directions.

TAXII is designed to support STIX. In contrast to syslog, which transmits in clear text by default, TAXII

uses a transport encryption protocol (HTTPS) to transmit information between two peers [43].

18

3 Related Work

This chapter represents the state of the art, what has already been done.

Cheswick described the first honeypot already in the early 90s [1].

HoneyD was the first open source honeypot, which was presented in a paper by its author Provos [4]. It

already enabled to customise the installation via plugins. HoneyD is no longer under active development.

Petrunić created a method to use mostly passively used honeytokens as an active defense method against

attackers and attack attackers [3].

Pouget et al. defined a clear and simple general understanding of the most known honey systems and created

a well known terminology [5]. This is an important work to organise international research.

Spitzner is a well known expert about honeypots. He created a lot of work about this topic, as well as

a comprehensive text book about honeypots [6] and the first work about catching an insider with honey

systems [10].

Baumann et al. created a first extensive master thesis about honeypots [7].

Project is a non-profit organisation which creates knowledge and software on various honey systems. They

are the organisation who created the product honeywall. They created a series of articles called “Know your

enemy” which had a lot of impact in honey system development [8] [9].

Bowen et al. made a first notable research about baiting inside attackers with honeytokens [13].

Mokube et al. did a small survey about honeypots, that provides a good first insight into this topic [14].

Mairh et al. created an extended survey about honeypots [15].

Vasilomanolakis et al. created a newly honeypot use case with their research implementation “Hostage” [16],

the public network vulnerability scan. It also got an update with slightly different authors [17].

Ren et al. created a theoretical approach to evaluate a honeypot potency in the network [18].

Wang et al. did a research about how to extend honey system accuracy with machine learning [20]. They

added a SVM algorithm to a honeypot and were able to achieve a 89% accuracy in malicious traffic detection.

This concept has already been updated [21].

Martínez Garre et al. created a honeynet to detect the creating of a botnet [22].

19

3 Related Work

Shi et al. created an approach to distribute honeypot data in a blockchain to be more resistant against take-

downs and to act with a profound data base [23].

Qassrawi et al. created an overview of deception methods of honeypots to gather as much information as

possible during attacks [25].

Lewandowski et al. created an approach to analyse web bot on websites [26]. They created a website as a

honeypot to detect how web spiders crawl through a website.

Djanali et al. created a similar approach to Petrunić with his active honeytokens [3], but they created a

honeypot to achieve a counter attack to attackers and reveal their identity [27].

Bercovitch et al. build an automated honeytoken generator that is able to build a honeytoken for every

environment and the token not be detectable by humans [28].

Sandescu et al. used honeytokens to help understanding an attack and to influence the execution of it [29].

Spitzner created an early comprehensive general understanding of honeytokens [30].

Quynh et al. described XEBEK and SEBEK, honeypot monitoring tools [31].

Wagner described the mechanisms of STIX and TAXII, threat information exchange approaches and tools.

Zou et al. described a way how honeypots might get detected in botnets [33]. Also, Wang et al. described a

similar approach [36]. This raised the question about the capabilities of honeypots. Should they be able to

attack other systems and damage critical infrastructure to look authentic?

Bajtoš et al. described a method to monitor and analyse botnets wits honeypots [34].

Sokol et al. created a comprehensive overview about privacy issues by honey systems already including

GDPR concerns [39].

Choo et al. described information culture and their usage in modern organisations [44].

Janczewski et al. described the principle of the “Need-to-know” approach, where information security in a

company lies in disguising and hiding information; a security by obscurity approach [45].

20

4 Approach

To answer the key research questions, the intermediate questions must be answered first. Some assumptions

on personnel and device assets, as well as on permissions and hideability of assets are made to investigate

the intermediate questions and further the key research question. These assumptions are used to answer

the intermediate research question from chapter 1, which will be confirmed via an experiment in the next

chapter.

4.1 Personnel

The main question “How to hide a honey system to the inside?”, as well as the question “From which

staff can a honey system be hidden?” needs an overview of involved staff in a company or organisation.

The following paragraphs enumerate a list of personnel in an organisation which will get in contact with a

network device, resp. a honeypot and what the role know about the device. The following paragraphs list

roles; this means multiple roles can be assigned to one person. As this list has been created with meticulous

care, the list will probably not be complete to any organisation. The described rights and privileges are

written from the point of view of an ideal organisation with an ideal assignment of permissions. When

executing such a project, one must always consider the the state of the current assignment of permission and

of the current culture of the organisation. The culture of an organisation rules the sharing of information

inside and outside an organisation [44].

4.1.1 CEO / Secretary

This role is accountable for everything inside its organisation. If something miserably fails, the CEO or

secretary is accountable for it as a last consequence [46].

This role needs to be aware of possible consequences in terms of a risk analysis to approve the project. The

only reason to not involve this role, is when it is not trusted anymore. This implies a severe trust problem

in the organisation and needs the project to be started by a supervisor. In generic deployments, the Chief

21

4 Approach

Executive Officer (CEO) or secretary needs to be informed at least, to comply with the business hierarchy.

The CEO or secretary knows about the existence of the device and the possible risks, but does not need to

know details, where and how it is implemented.

4.1.2 Lawyer

The lawyer advises about legal issues as described in section 2.5. The lawyer also will be needed if the honey

system becomes rogue and starts to attack external or internal parties and indemnity claims or penalties need

to be processed. The lawyer also gives advises on how much the auditor needs to know of the system. If

the lawyer assumes liability of the honey system or the given advises depends on the contracts between the

lawyer and the organisation, as well as on the applicable law.

The lawyer has the same knowledge level about the device as the CEO or secretary. The role of the lawyer

knows about the existence of the device and the risks about it.

4.1.3 Accounting and Procurement

The accounting has an overview of the finances and assets of an organisation. The accounting sees all

invoices of a company. The procurement purchases all assets. Both departments could ask for the purpose

of the asset. If the purpose will ever get questioned by the department is a completely different topic.

The accounting and procurement only knows about the physical asset and/or software, if something has to

be paid. In case of a virtual and free honey system, these two departments would not get in contact with it.

4.1.4 IT Administrator

The IT administrator is the most interesting role. The administrator is the role with the most knowledge

about the IT infrastructure, which is often the most critical asset of an organisation [47]. Also, the role of

the administrator has the most access to the systems and is granted with the most privileges and trust.

The administrator is supposed to know all IT related assets of an organisation. This role should have full

insight in network traffic, as well full access to all IT systems, all physical and virtual machines. This access

includes the access to general and specific documentation of company assets and processes. If something

fishy or rogue appears inside the organisations network or some unknown is inside a server room, the

administrator gets alarmed and triggers an investigation. With the rise of cloud computing, the significance

of server rooms may shrink, but at least will stay present in producing organisations.

The administrator will see the asset, no matter if it is physical or virtual, as well as the traffic and electroni-

cally documentation of a network devices like a honey system.

22

4 Approach

4.1.5 DevOps

The DevOps will work on self assigned assets. The DevOps only knows IT assets from it’s domain. When

working with virtual machines, only required ones are visible and accessible. The DevOps gets partial

access to the network to debug the developed and supported software. Also, the DevOps can have access to

the general documentation.

The developer has no physical contact and no commercial contact to this device. The only way the devel-

oper notices the network device is, when it sends network traffic for whatever reason to a program of the

developer.

4.1.6 Security

The security guard knows the building and and its people. This role notices any changes inside and outside

a building. The security is in charge of the security cameras and needs to approve any modifications of the

building.

The role of the security guard will notice any physical changes of server infrastructure. The security probable

won’t know what the device is for, although a small device on top of the server rack or hidden somewhere

looks suspicious. If the honey system is virtualised, the security won’t notice any change.

4.1.7 Product owner

The product owner or principal of the project knows anything about the project. Therefore, the honey system

cannot be hidden from the principal. The principal should consult a lawyer whether the principal is entitled

to lead this project and what are the responsibilities if anything goes wrong.

4.1.8 Random passerby

A random passerby could see the physical device or virtual device (if it is a privileged passerby) plus its

cabling. The passerby could get curious but will not get suspicious about the device.

4.1.9 Machine Operator

This role operates a machine and knows how to debug basic failures. The machine operator knows the basic

structure of the machine.

The machine operator notices a modification on the machine or if a new device will get directly connected

to it and will ask questions if this will affect the performance of the machine and debugging process.

23

4 Approach

4.1.10 Data Protection Officer

The Data Protection Officer (DPO) knows all business processes around data processing, especially the

ones with personally related data. The DPO lists and describes all processes and argues them to authorities

requesting customers.

The DPO has access to all documentation of processes. This role is mostly entitled to question processes

and ask details about them.

4.1.11 CIO

The Chief Information Officer (CIO) is accountable for the IT. The CIO knows about the documentation

and has access to it. The CIO does not necessarily have contact with the device, as the role is accountable

for the operating of the overall IT, but not a specific device.

4.1.12 CISO

The Chief Information Security Officer (CISO) is accountable for the information security of the organisa-

tion. This role needs to be informed and also has full access to the documentation. If this role is untrusted,

the same principle like the CEO applies.

4.1.13 Auditor

The auditor could be an internal or external role. The auditor asks question about the organisations processes

and assets. An internal auditor is used to self-reflect an organisation, an external auditor is used, when

certifying the organisation or when the law obliges the organisation to do so.

The auditor knows the network and IT infrastructure. To determine, if a specific network devices needs to

be mentioned during an audit and to what detail level, a lawyer should be contacted.

4.1.14 Personnel in the Audit

Personnel in the audit will possibly hear and read every information shared in the audit. The attendee should

be aware of everything that will be discussed, otherwise a confidential audit could be a solution to avoid

additional, unaware personnel.

24

4 Approach

4.1.15 Documentation Manager

The documentation manager has access to all documentation and requests relevant documentation. This role

knows about a network device via its documentation.

4.1.16 Direct Supervisor

The direct supervisor is a role, that has to be created individually for every organisation. It will probably

know most of the tasks of staff, but does not necessarily know every task and every asset. The accountability

of the direct supervisor must be clarified for every organisation.

4.2 Properties of a Network Device

Each network device has some assets that will be enumerated. These assets will be visible to different

roles inside a company. The following paragraphs explain the specific assets grouped into any presence or

physical assets, network assets, and assets about the project or application.

4.2.1 Presence Assets

The first asset group is the simple presence of a device. The device can be physically present and visible

through a classical pizza box, a Single Board Computer (SBC), cables in unusual colors or newly used

switch ports, or just be a virtual device and therefore is visible through its virtual asset in a hypervisor.

4.2.2 Network Assets

The second asset group is about network and traffic. The IP address and the MAC address are fundamental

assets of a network device. The Internet Protocol (IP) address represents the layer 3 address of the Open

Systems Interconnection (OSI) model, while the Media Access Control (MAC) address represents the layer

2 address of the OSI model. They are essential when communicating over the network and need to be

configured correctly. These assets appear in network traffic. The MAC address will appear in arp watch

results and alerts, while the IP address appears in network configuration, like a firewall, an Access Control

List (ACL), in connection tables, and Domain Name System (DNS) entries. The IP address often appears

in inventory systems as well.

The second most important network asset is the functional traffic of the device. This is the traffic, that does

the intended work of the service. In case of a web server, this would be the Hypertext Transfer Protocol

25

4 Approach

(HTTP). The functional traffic of a honey system, is the traffic that interacts with the attacker; the respective

service varies with the honey system implementations.

Another important network asset is the management traffic. This traffic is used to manage the device, and

the services hosted on the device. It is usually between an administrator or an administrative service and

the service or OS of the device. Management traffic mostly consists of the services Secure Shell (SSH) and

Remote Desktop Protocol (RDP).

Monitoring traffic is about to monitor the device and service states. Prominent services are Simple Network

Management Protocol (SNMP) and emailing (Simple Mail Transfer Protocol (SMTP)). SNMP and the trap

protocol are used to monitor the states, emailing is used to notify when something critical happens.

Synchronising traffic should not be forgotten. Synchronising traffic should be switched and routed over a

separate network but often is not. Nevertheless, this traffic is used to synchronise the services on a network

device for a High-Availability (HA) or Load-Balancing scenario. The protocols used include Common

Address Redundancy Protocol (CARP), and the proprietary Virtual Router Redundancy Protocol (VRRP).

Logging traffic is about sending logs from a service or device to a log server or SIEM service. Most network

devices, especially honey systems have a strong demand to send logs immediately to an external server (see

subsection 2.4.1).

DNS traffic is used to resolve domain names to IP addresses. The device connects to a previously configured

DNS server. The DNS traffic is seen as one of the most critical network services, as without a functional

DNS service, most traffic requests cannot be resolved to the right address.

Another critical network service is the Network Time Protocol (NTP) service. It is used to synchronise time

all over the internet. Without a correct time, most services won’t work correctly and logging information

may be useless.

Any Domain traffic, as Lightweight Directory Access Protocol (LDAP), the proprietary Active Directory

(AD) and generic user authentication traffic may be configured on a device.

Connectivity checks, like Internet Control Message Protocol (ICMP) requests, can tell a lot about a network.

These requests need to be taken in account, when hiding a device.

Traffic to inventory services appears, when configured. This traffic varies the used protocols, but is mostly

an Application Programming Interface (API) over HTTP.

Apart from the traffic assets, the network device could be visible in the inventory software, in the configura-

tion settings of DNS, the firewall, switch, and router.

26

4 Approach

4.2.3 Project assets

The last asset group, where the device appears is the project itself. The project also has three assets.

The application is the core asset, why this project has been started at all. This could include a web applica-

tion, an API or similar.

The technical documentation is a tricky part, as the documentation could be shared across the organisation

and cross-links to documentation may happen. The documentation of an asset is often not only in one central

location, but distributed to multiple locations.

The management summary is presented to management staff to create a basis of decision making. It includes

some basic information, a risk evaluation and possible affected processes.

4.3 Theoretical Information Obligations

Each organisation has a hierarchy which structures information flow and defines which roles need to know

which information or is responsible and accountable for specific assets and processes. Table 4.1 visualise

the theoretical information obligation, that allows a comparison of the matrix. It shows the access of all

enumerated assets and roles of the previous sections and shows the access and knowledge level of the role

about an asset of the honey system. The table is ranked from top to bottom from the most critical access

to the least critical access to information. Critical information is ranked from left (least critical) to right

(most critical). It is intended to give an overview about which role needs which access in a least privilege

environment.

The following paragraphs answers the question “Which people need to be involved?” and describe the

access to assets per role in detail.

4.3.1 Knowledge about true purpose

The product owner is the head of the project. The product owner knows everything about the project and

therefore has access to everything. The product owner has access to the management summary and technical

documentation describing the real purpose and therefore knows all things about the project. This role has

access to the application itself (L7), as well as to any network related objects (L2 - L6), and knows the

location of the physical or virtual device.

The CISO knows the real purpose of the project. The CISO has access to the management summary and as

this role is accountable for information security, this role has access to the application.

27

4 Approach

Presence Network Application

L
1

V
ir

tu
al

L
2

L
3

L
4

L
5

L
6

L
7

D
oc

um
en

ta
tio

n

Su
m

m
ar

y

Product owner • • • • • • • • • •

CISO • •

CEO •

Lawyer •

Supervisor �

DPO �

External Auditor �

Personnel in Audit �

Documentation Manager �

CIO �

Administrator � � � � �

DevOps � � �

Operator �

Security �

Procurement � �

Accounting � �

Passerby �

Internal Auditor

Table 4.1: • - Knows the real purpose of asset. � - Does not know the real purpose.

The table lists roles and assets derived from the OSI layers. Roles and assets are described in

section 4.1 and section 4.2. Extended information about the matrix is given in section 4.3.

28

4 Approach

The CEO and the lawyer have access to the management summary including the knowledge of the real

purpose. They need to know that there is such a project, but they don’t need to now any technical details.

These roles have access to the most critical, sensitive information. As they have access to real information

and documentation about the project, these roles must be reminded about the criticality of the information

and the group of people who knows about the project.

4.3.2 Knowledge about fake purpose

The supervisor needs to know about a fake management summary. As the supervisor has access to human

resources, this role needs to know what these resources are used for, and when they are available again.

The DPO needs to know that the project does something with security and it will deal with user data. It

may be possible to justify this project by the means of perimeter security, so there is no need to identify

a honeypot in any disclaimers and privacy statements. If so, it is sufficient to provide the DPO a fake

management summary. Otherwise, the DPO needs to have access to the real management summary. This

needs to be further defined by law. The DPO is always in conflict of privacy and security. To be fair enough,

it is assumed, that an attacker won’t complain about a honeypot at the data protection authority.

The external auditor as well as the personnel in the audit will probably only need a fake management

summary. This depends on the topics of the audit and the answers given by a lawyer. If a fake management

summary is not sufficient, the real management summary must be provided. The personnel knows, reads

and hears anything that is discussed during the audit.

The documentation manager knows anything about the documentation and therefore will look for a doc-

umentation about the new system. The documentation manager therefore needs access to a fake technical

documentation, just to satisfy the need of accessible documentation.

As head of the IT-department, the CIO needs a access to a fake documentation, to satisfy the requirements

of a clean setup. It is not necessary to provide this role any kind of summary, as the CIO only needs to know

that its systems are fully functional.

The administrator does not need anything to know about the project and application itself, but only needs

knowledge up to layer four. This includes physical and virtual presence, MAC and IP addresses for routing

purposes, as well as used ports for firewall access rules. Considerations must be made on the authenticity.

A SSH honeypot in a server net seams possible, a modbus honeypot in a production net also seams possible.

A RDP honeypot in a linux server net seams suspicious, as well as a generic TCP proxy honeypot (e.g.

Glutton1) accepting connections to all ports. These indicators will not only make an administrator feel

1https://github.com/mushorg/glutton

29

https://github.com/mushorg/glutton

4 Approach

suspicious, but also an attacker. The administrator does not know about the real purpose of the project.

The operator in DevOps has a limited set of knowledge about the project, only including assets which the

role might get in contact with. This includes the physical presence of a server, the MAC address and the IP

address. This role also has no knowledge about the real purpose of the project and does not necessarily need

to know anything about the project.

If the network device is physically connected to a machine, the operator of the machine needs to get in-

formed about the device. The operator only wants to know if this device interferes with its work and if the

device must be considered while working or simple debugging.

The security personnel knows the physical appearance of the server room. Therefore it needs to know

something about a physical device. If the device is standard server size, the security probably won’t get

suspicious, but the role will be when it is minicomputer sized. A new server in the room although will get

the attention of the administrator.

The procurement and accounting know about the physical and virtual device if these have any financial

costs. When using used hardware and free, open-source software these two roles do not interact with the

project in any way. These roles also only need to know a very generic purpose.

A random passerby might notice a physical device. The role may be curious about it.

4.3.3 No knowledge

The internal auditor, in contrary of the external auditor, is the only role, that gets listed in this work, that

has no need of knowing anything about the project. Still, to get a good internal audit report, it is advised to

choose a person doing the internal audit, that already knows about the project through another role.

Any other role in the organisation does not need any knowledge about the project.

4.4 Hiding or disguise a network device

In order to hide a network device, one must be very carefully. It must be defined from whom this device

should and must be hidden from and why. This exact definition is essential for the success of the whole

project. According to the definitions, staff groups can be merged in order to hide and disguise the network

device from the different roles. It is recommended that a network device is disguised, rather than completely

hidden because of the simplicity of disguising compared to hiding it. Disguising and hiding a network device

require two completely different approaches. This section will treat the questions “How to physically hide

the system?”, “How and where to log”, and “How to hide traffic?”.

30

4 Approach

When disguising a network device, a story and fake purpose must be defined for the device. For a honeypot,

any common network device can serve as a fake purpose; a web-server for internal documents for example.

A honeynet needs a better scaling device, which also creates a net: e.g. climate sensors. Climate sensors

might be placed around the organisations building and measure all kinds of climate values; e.g. temperature,

barometric pressure, humidity. It is possible to either place honeypots onto the existing climate devices and

therefore enhance the function of them, or it is possible to enhance the network of climate devices with a

variety of fake sensors. In terms of hiding the honeypot/honeynet, it is better to place them onto the existing

devices, because no further devices are created. If this approach is also efficient to catch possible attackers

it must be examined by every organisation, because of every organisations unique network topology.

When creating a story to disguise a network device, it is recommended to identify the staff groups which

will most likely detect the real purpose of the project. Table 4.1 helps identifying them. The more about

the application is known, the more likely it is that the real purpose is revealed. Also, the general knowledge

about such devices in a company needs to be taken in account. Climate sensors may seem like a good story

in a bank. Neither the management personnel, nor the administrators may know the functioning of a climate

sensor. A climate sensor in a meteorological office may seem like a bad story, as staff is supposed to know

the functioning of their sensors. A code name for the project is highly recommended. If the organisation

already has a tradition of code naming projects, it is recommended to just apply to the already existing

rules. A project with a code name has an official and confidential appearance. This is a good parameter for

both person groups. Benevolent staff does not question the project, because of its official and confidential

character, attackers and malicious staff are attracted by it. A disguised device still needs to look valid,

therefore it is recommended to set any local settings (keyboard language, system language, login banner,

required authentication method, etc.) equal or similar to the organisations standard.

When hiding a network device, other rules apply. A device does not need to be disguised, several staff groups

must not even know that the device exists. Hiding a network device is a strict technical and psychological

task. Whether a network device may be hidden from the management level is a pure legal question which

will not be answered here. To technically hide it from the management level, it is mostly only necessary to

simply not tell them or assign read permissions to the documentation. Hiding a network device therefore is

limited to its physical and virtual appearance. To hide a virtual device, the hypervisor must be assigned with

correct permissions. This might be the case in large organisations, but Small and Medium Businesses (SMB)

won’t limit administrators in working on the hypervisor. Hiding a physical device requires knowledge of

the physical infrastructure of the building. Hiding a smaller device might be easier than a bigger device,

therefore a SBC is recommended. A SBC can be tapped to the inside of a productive machine, or in a

31

4 Approach

distributing cabinet. It is also recommended to place such a device in a server rack from another department.

This triggers a psychological effect: “I am not in charge”. The own department does not question the device,

as it is in the authority of the other department. The other department is afraid to access the device, because

it is not from their department. This setup requires two separate departments. It is also of advantage, if there

is a rivalry between these departments and they don’t communicate good. When placing such a device, it is

necessary to adapt it to the environment. For example, when it gets connected to a switch, where only blue

cables are wired to, connecting it with an orange cable seems suspicious.

Hiding a device at the network layers is a tough challenge. When traffic is not monitored via a SIEM or

similar, this point may be neglected. To hide the network traffic from a network device, it is necessary to

reduce its traffic. To reduce traffic, a host firewall (e.g. iptables) can be used to block or drop all outgoing

traffic, except strictly necessary one. The only necessary traffic of a honeypot is the functional honeypot

traffic, as well as time synchronisation for logging purposes, logging, and monitoring. Logging and moni-

toring of a honeypot must be done in real time, as honeypots bear a great danger of compromisation, while

the management of a honeypot could be done via physical access to it. Functional traffic is only allowed to

be initialised by a remote host, while logging is only allowed to be initialised by the honeypot. Monitoring

depends on the implementation and needs to be considered by the organisation. An approach to effectively

hide traffic would be to use two network interfaces. One for the honeypot traffic, and one for management

traffic. The functional Network interface controller (NIC) could be connected to a functional network while

the management NIC is connected to a dedicated management honeynet. If the honeypots in this honeynet

are placed in different networks, this concept may compromise the organisations overall security. A com-

promised honeypot may be used as a jump host over the management network to other networks, bypassing

perimeter firewalls! Otherwise, to avoid logging of management traffic, the usage of available resources

inside the same network is recommended: NTP-Server may be in the same network, as well as a distributed

logging server may push logs from network A to the central logging server in network B.

Nevertheless, the first impression of a network device counts. Configure the device, as similar, as any other

network device in the company, ergo set a correct Message of the Day (MotD), a correct SSH banner, correct

hostname and correct timestamp.

4.4.1 Hide from security services

Organisations may have systems that regulary scan and access network resources, which might not be de-

sired on specific devices. In order to hide the network device, resp. the honeypot, it should not respond

to any requests coming from these systems. A host firewall (e.g.: iptables) is suitable to just drop packets

32

4 Approach

from specific hosts without the need of adjusting any other system. It is recommended to drop packets

from at least the following systems, to hide the network device: automated vulnerability network scanner

(e.g.: OpenVAS, Nessus) and inventory systems. Monitoring systems need to be considered carefully. It

may be necessary to restrict access from these systems to the honeypot, or it may be desired to allow access

to disguise the honeypot as a productive system. The following enumeration describes the most common

services and how to consider them when hiding a network device.

• Vulnerability scanner: A vulnerability scanner like Nessus or OpenVAS automatically or manually

scans the network for vulnerabilities. When a honeypot, offering vulnerable services is being scanned,

the vulnerability scanner would alert several staff roles, including the administrator. It is recom-

mended to blacklist owned vulnerability scanners, therefore drop requests via a host firewall.

• 802.1x Authentication: Networks may restrict access based on 802.1x rules watched by a radius

server. These rules may base on MAC addresses, usernames and passwords, and cryptographic cer-

tificates. To successfully connect to such a network, it is necessary to announce the device to the

radius server. The MAC address based concept could be bypassed by assigning the honeypot an ad-

dress, already existing in the network. This is highly unrecommended, because it bears the risk of a

MAC-address collision. When doing so, select a MAC-address of a device, which has already been

decommissioned and will not join the network anymore. A username/password concept would not

leave any traces on the radius server itself, but at the LDAP/AD server. The certificate based authenti-

cation requires a certificate, most likely issued by the local Public Key Infrastructure (PKI). This also,

does not leave any traces on the radius server but at the local Certificate Authority (CA).

• Arp-watch: An arp-watch monitors the network about device appearances and alerts administrators

if a new device with a new MAC-address has been found. The same rules apply, as with the radius

server and MAC-addresses. The radius server and arp-watch may be the same product, but they may

as well be splitted. When submitting the MAC address of the new device to the list of known devices

at the arp-watch, the arp-watch would not alert anybody when seeing the device. An administrator

may overlook such an entry very easily.

To successfully hide network traffic from a device, there are two approaches:

• Not sending any traffic

• Hiding functional traffic in noise

Not sending any traffic seems difficult, as network devices are built to send traffic. An approach may be to

not send anything on the functional device but only listen. In Operational Technology (OT) networks, it may

be possible to exchange a switch with a hub to monitor all traffic passing the hub. This impacts performance

33

4 Approach

a lot, as most “modern” hubs have a maximum throughput of 100Mb/s per Hub which decreases with every

communicating member on the hub. The hub may be exchanged during a Business-Continuity-Management

(BCM) test and be just forgotten by purpose. Hiding functional traffic under a lot of noise is a good way to

tire an administrator. If a lot of noise is generated by the device, it may happen, that the administrator marks

all traffic as noise and won’t notice the functional traffic.

4.4.2 Hide Documentation

To hide the documentation and process assets is a critical part of hiding a network device. The documenta-

tion of a network device includes everything known to the organisation to the purpose and implementation

of the system. This section help answering the question “How and where to document everything about the

device?”.

When disguising a device, a real and a fake documentation will be created. The real documentation contains

everything a normal documentation contains as well. The real documentation needs to be hidden either via

permission sets or via storing them into another storage, out of reach for generic organisation staff. The

fake documentation needs to be placed according to the organisation policy. Therefore when doing a com-

missioning process, the inventory, as well as any alerting, entries in host lists, etc. remains the same to the

organisations process, solely the real purpose of the device gets disguised. Any shared access credentials

may be created and submitted to the organisations credential collection (password safe, etc.) to reveal any

curious staff. The code of the project should not be submitted to any automation software, but submitted to

a specific Version Control System (VCS) project with a special permissions set. Updating the fake docu-

mentation has an advantage and a disadvantage. When updating the documentation, the device looks more

like a real up-to-date device, but also reminds administrators of the device.

When hiding a device the procedure for the real documentation is the same as when disguising a device. Hide

the documentation via a special permission set or store it into another storage out of reach of generic staff. As

the device gets hidden, there will be no fake documentation, therefore no public available information about

it. Changes in the infrastructure required for the project that require a documentation need to be avoided

or documented with special permissions, or if not possible, not documented which is not recommended.

This will raise issues and therefore the concept of hiding a network device needs to be evaluated if it is

possible at all to do this in an organisation. Not documenting infrastructure settings like IP-addresses, switch

ports, firewall configuration, etc. will lead to inconsistencies (double-assigned IP-addresses, overwritten

configuration, etc.) and availability issues. Keeping an inventory up to date public available is a critical

34

4 Approach

control in IT security2.

4.5 Goals

When hiding an asset from personnel, it must be clearly defined why doing so. What are the goals when

hiding an asset. What type of attacker is the asset hidden from:

• External attacker

• External attacker, already operating from the inner network

• Internal attacker

4.5.1 External attacker

An external attacker is the easiest one to identify and detect from the above list. An external attacker does

only know very limited information about the target and needs to gain these information in the first place. To

catch an external attacker it is only necessary to hide a honeypot to external people. Therefore, all technical

actions must be made, but there are no organisational actions necessary.

4.5.2 External attacker, already operating from the inner network

An external attacker, already operating from the inner network has successfully penetrated the security

perimeters and is able to jump to hosts in the inner network of an organisation. This type of attacker

may have fully access to technical parts of an organisation but has only limited access to organisational

knowledge. This attacker has technical access to the organisation, but the only knowledge is gained from

documentation placed into the organisations IT-systems.

To hide a honeypot from this type of attacker it is necessary to hide the documentation of the honeypot

according to subsection 4.4.2. Also, the usage of code names for the project is recommended. The usage of

a need to know principle [45] may prevent unintended, uncontrolled information spread.

4.5.3 Internal attacker

To detect an internal attacker is the most difficult thing. An internal attacker could be staff, or a someone

getting information from an insider. An insider is the most dangerous attacker, as the insider is capable

of doing the most damage in little time. Trying to catch an insider requires a lot of privilege management

which may create a bad mood in the organisation. Trying to catch a possible insider means to mistrust staff.

2https://www.cisecurity.org/controls/inventory-and-control-of-hardware-assets/

35

https://www.cisecurity.org/controls/inventory-and-control-of-hardware-assets/

4 Approach

Actions to catch insiders should be strictly limited temporarily and only be done when absolutely necessary.

They include all technical specifications, as well as organisational actions.

4.6 Possible project assignee groups

When planing to hide or disguise a honey system it is necessary to also plan the project assignee. Who will

implement and maintain the project. This paragraph helps deciding it. What are the possible constellations

of project assignees? Which constellations bear which advantages and which risks?

There are three possible and useful group constellations; single, one team, and two teams; which will be

described in the following. All three approaches only work if the organisation is used to confidential projects.

Everything else looks suspicious.

4.6.1 Single person

A single person gets instructed to implement and hide a honey system. This person need to be trustworthy,

an expert on honey systems and an expert of the organisations IT infrastructure. This person cannot get any

internal help and needs to decide any technical questions autonomous. This approach has the advantage

of low costs, but the disadvantage of a low liability for the assignee as well as for the organisation. The

organisation has no way to monitor the doing of the assignee, as well as the assignee cannot enter any

objection to an accusation of the company. Also, if the approach is busted, the trust of other colleagues

to the administrator will be ruined and the performance of collaboration will decrease. The single person

approach is the cheapest one, but not the best one. It is only recommended in small organisations, not having

multiple IT teams.

4.6.2 One team

Only one team gets to operate a honey system. This means that everybody, except the one team and person-

nel from Table 4.1 does not know anything about the project. This requires either already existing multiple

IT-teams, or the creation of a secret team in a team. The advantages are a better liability compared to the

single person approach, for both the organisation and the single person. It is not possible to accuse a single

person about anything secret, that only few persons can check, also, the organisation has a better tool to

control the single person about its doing. Also the complexity may decrease, depending on the previous

existence of the team. If the team already existed, the project becomes less complex, as roles inside the team

are already defined and the IT infrastructure already has non-suspicious privilege and permission presets.

36

4 Approach

If the team is only created for the project complexity rises compared to the single person approach, as all

these roles, privileges and permissions need to be newly defined. The disadvantages are a worse liability of

the company compared to the two teams approach and a newly created feeling of privileged administrators.

Personnel not inside the team are automatically labeled as not trustworthy. If anything goes wrong and this

approach gets discovered this creates a huge disharmony inside the IT department which will have a massive

negative impact on performance. The IT department will not work together anymore and a lot of personnel

need to be exchanged. This again will lead to a massive negative impact on performance. Therefore this

approach is not recommended, as it bears to much risk.

4.6.3 Multiple teams

The multiple team approach is the most expensive, but also most controlling approach. Multiple teams, at

least two, operate their own honey system. The other teams know that another team is operating a honey

system but they do not know where and who. This enables to control every team in the organisation by

somebody else. This only works if at least two IT-operating teams work in an organisation and they have

a clear domain of responsibility. It also needs already existing systems that one team has no access to, so

honey systems can be hidden. This approach denies the massive disadvantage of distrusting other personnel,

as the approach will become a security improvement in company culture. The disadvantages are the higher

costs and that at least two teams are needed which are not available everywhere. This is the recommended

approach.

4.7 Classifing Honey Systems about their Hiding Potential

The previous paragraphs help to rate honey systems about the hiding potential which will be discussed in

the following:

1. Honeytokens are the easiest honey system to hide. As they are just plain data or files, they only possess

two assets according to section 4.2, the presence and project asset, but no network asset. Therefore

there is no need to hide any network asset, as well as there is no need to document any associated asset

(which needs to be hidden as well). The honey token therefore only possesses a physical or virtual

asset, as well as a management documentation and technical documentation which need to be hidden.

The hiding and disguising potential of honeytokens is equally set.

2. Honeypots rank second as they are a single device or service which need to be hidden. Neverthe-

less, Honeypots possess the full range of section 4.2 assets which need to be hidden or disguised.

37

4 Approach

Honeypots are easier disguised than hidden, because of their network assets.

3. Honeynets are hard to hide. Because of their amount of honeypots, this requires a lot of organisational

thoughts and is best suitable for larger companies with a distributed set of permissions. Internally

hidden honeynets might only be used in a multiple team approach (subsection 4.6.3). Honeynets are

easier to disguise than honeypots (e.g.: a distributed climate sensor control network in a production

facility seems more valid than a simple sensor), but are harder to hide than honeypots because of their

increased number of devices.

4. Honeywalls are the hardest system to hide. On the one side, they only make sense when operating a

honeynet which is already hard to hide. On the other side, honeywalls operate as firewalls and route

traffic. It may be impossible to hide a honeywall, but only be possible to disguise it, as also valid

traffic need to know the existence of a honeywall.

As seen, the type of assets as well as the number of devices and purpose of the system play a significant role

in rating honey systems about their hiding potential. An interesting part is, that hiding a system gets harder

with an increasing number of devices, while disguises gets easier with an increasing number of devices.

4.8 Busted?

What happens when the purpose of the project is busted? Someone revealed the objective of the network

device. This section answers the question “What to do when the device is being found by an employee?”.

When someone busted the honeypot, the assignee or product owner needs to act fast. The respective person

needs to be privately spoken to immediately. It is necessary to explain the whole project in detail to the

person, to not create any rumours and to not create the feeling to fob the person off. This includes the

purpose, the aim and the assigned persons. Also, it must be explained that this is confidential information.

If a Non-Disclosure-Aggreement (NDA) is necessary needs to be defined by every organisation itself.

What happens if too many people discover the true purpose needs to be defined by every organisation, as

well as the definition of “too many people”. It is recommended to define the threshold per department and by

the company. The decision, if the project should be revealed, terminated, or continued also depends on the

goal of the project (section 4.5). To catch external attackers operating from the inside, it is recommended

to either reveal or continue the project, while when catching insiders it is recommended to terminate the

project, as the goal has not been achieved. Retrying such a project should only be done after a cool down

phase, when people already forgot the project or have fluctuated much in the organisation.

38

4 Approach

4.9 Busted!

The goal of the project will lead to someone getting busted. But what happens, if the honeypot raises an

alert?

First of all, the alert needs to be verified. Is this a false positive or a real incident. Then, it needs to be

distinguished if the incident is a real attacker or just some curious in the organisation. If the incident seems

to be someone curious, monitor the behaviour and decide if actions according to section 4.8 are necessary. If

the incidents originates from an external attacker, actions according to the organisations policy or other best

practices should be done without mentioning the honeypot when warning other, not inaugurated personnel.

To distinguish between curious personnel and an insider threat, it is recommended to ask the person specific

direct questions about the happened access attempt. Why did the person try to access the system? How

did it find it? What did the person expect to find? After this interview either the actions of section 4.8 are

necessary, or to treat the person as an insider threat according to organisation policy.

39

5 Experiment

An experiment was made to see how to hide a honeypot in an organisation. The research questions of this

experiment is related to the research questions of this thesis. Does someone in the organisation discover the

real purpose of the device? If so, how long does it take to realise the real purpose? Whom will it be? What

is the initial trigger? What is the workflow when finding the device.

The hypothesis is that the staff will comply to the theoretical information obligations of section 4.3 and

therefore only chosen staff knows the real purpose of the device as a honeypot.

5.1 Setup

A physical device, a Raspberry Pi v3 was chosen to serve as host of the honeypot. Luckily, one device was

already present, so no new device had to be purchased. Therefore, there was no need to inform procurement

and accounting. The Raspberry Pi was placed into a floor network distribution cabinet. Therefore it was not

placed inside the server room, where a lot of changes happen, but placed into a very static place which is

still controlled by the IT personnel. As seen in Figure 5.1 it was placed in the back of the box, not clearly

visible to everybody and labeled with the hostname. The hostname was chosen to meet the requirements of a

code name of a project of the organisation. As used code names are names of famous mountains, a non-used

mountain to name the project was chosen: Project Mount Fuji, for example. This should attract malicious

user and distract compliant members of the network. Naming a project with a code name, enables it to doc-

ument common assets easily, like IP addresses (192.168.0.250 is the address of asset fuji01.example.org).

The Raspberry Pi was setup with a standard Debian image. As a honeypot, cowrie1 was chosen. Cowrie is

a SSH and telnet honeypot written in python. The chosen implementation was the docker version of cowrie,

so docker was installed on the Raspberry Pi. To successfully run docker on an older raspberry, some bash

commands must be executed to run iptables in legacy mode, which are show in Listing 5.1. The settings to

configure arptables and ebtables may not be needed, depending, whether they are installed or not.

1https://www.cowrie.org/

41

https://www.cowrie.org/

5 Experiment

Figure 5.1: The Raspberry Pi from the experiment placed in the back of a network distribution cabinet. On

the left side, some network devices are stacked. It is placed behind a cover, so it is not visible

when looking through the glas door or even when opening it.

Listing 5.1: Setting iptables back to legacy version

upda te − a l t e r n a t i v e s −− s e t i p t a b l e s / u s r / s b i n / i p t a b l e s − l e g a c y

upda te − a l t e r n a t i v e s −− s e t i p 6 t a b l e s / u s r / s b i n / i p 6 t a b l e s − l e g a c y

upda te − a l t e r n a t i v e s −− s e t a r p t a b l e s / u s r / s b i n / a r p t a b l e s − l e g a c y

upda te − a l t e r n a t i v e s −− s e t e b t a b l e s / u s r / s b i n / e b t a b l e s − l e g a c y

The raspberry was inserted into the companies automation system, so the "essential" services and settings

(MotD, NTP, DNS, hostname, syslog, monitoring, etc.) are configured similar to already existing systems in

the organisation. Also, the password for fallback users were stored via the standard organisation processes.

Raspberry Pi computers use ARM architecture, the docker images of cowrie were only compatible for the

x86 architecture. Therefore the Dockerfile of cowrie2 was slightly adjusted, as seen in Listing 5.2. The

architecture was set to arm32v7 and cargo was added to be installed in the builder image. Cargo3 is the

package manager for Rust and is required to compile a wheel4 file for the cryptography packet of python.

2https://github.com/cowrie/docker-cowrie/blob/master/Dockerfile
3https://doc.rust-lang.org/cargo/
4https://pythonwheels.com/

42

https://github.com/cowrie/docker-cowrie/blob/master/Dockerfile
https://doc.rust-lang.org/cargo/
https://pythonwheels.com/

5 Experiment

Listing 5.2: Slightly adjusted Dockerfile to install cowrie

1 # T h i s D o c k e r f i l e c o n t a i n s two images , ‘ b u i l d e r ‘ and ‘ run t ime ‘ .

2 # ‘ b u i l d e r ‘ c o n t a i n s a l l n e c e s s a r y code t o b u i l d

3 # ‘ run t ime ‘ i s s t r i p p e d down .

4 ARG ARCH=arm32v7

5

6 FROM ${ARCH} / d e b i a n : b u s t e r − s l i m as b u i l d e r

7 LABEL m a i n t a i n e r =" Michel O o s t e r h o f < m i c h e l @ o o s t e r h o f . ne t >"

8

9 WORKDIR /

10

11 ENV COWRIE_GROUP= c ow r i e \

12 COWRIE_USER= c ow r i e \

13 COWRIE_HOME=/ c ow r i e

14

15 # S e t l o c a l e t o UTF−8 , o t h e r w i s e ups t ream l i b r a r i e s

16 # have b y t e s / s t r i n g c o n v e r s i o n i s s u e s

17 ENV LC_ALL=en_US . UTF−8 \

18 LANG=en_US . UTF−8 \

19 LANGUAGE=en_US . UTF−8

20

21 RUN groupadd − r −g 1000 ${COWRIE_GROUP} && \

22 u s e r a d d − r −u 1000 −d ${COWRIE_HOME} −m −g ${COWRIE_GROUP} ${COWRIE_USER}

23

24 # S e t up Debian p r e r e q s

25 RUN e x p o r t DEBIAN_FRONTEND= n o n i n t e r a c t i v e ; \

26 ap t − g e t u p d a t e && \

27 ap t − g e t i n s t a l l −y \

28 −o APT : : I n s t a l l − S u g g e s t s = f a l s e \

29 −o APT : : I n s t a l l −Recommends= f a l s e \

30 python3 − p i p \

31 l i b s s l −dev \

43

5 Experiment

32 ca − c e r t i f i c a t e s \

33 l i b f f i −dev \

34 python3 −dev \

35 python3 −venv \

36 python3 \

37 python3 − c r y p t o g r a p h y \

38 gcc \

39 g i t \

40 b u i l d − e s s e n t i a l \

41 python3 − v i r t u a l e n v \

42 python3 −wheel \

43 c a r g o \

44 l i b s n a p p y −dev \

45 d e f a u l t − l i b m y s q l c l i e n t −dev && \

46 rm − r f / v a r / l i b / a p t / l i s t s / *

47

48 # B u i l d a cow r i e e n v i r o n m e n t from g i t h u b ma s t e r HEAD.

49

50 USER ${COWRIE_USER}

51

52 RUN g i t c l o n e −− s e p a r a t e − g i t − d i r = / tmp / co wr i e . g i t \

53 h t t p s : / / g i t h u b . com / c ow r i e / c ow r i e ${COWRIE_HOME} / cowrie − g i t && \

54 cd ${COWRIE_HOME} && \

55 python3 −m venv cowrie −env && \

56 . cowrie −env / b i n / a c t i v a t e && \

57 p i p i n s t a l l −−no−cache − d i r −− upgrade p i p && \

58 p i p i n s t a l l −−no−cache − d i r −− upgrade wheel&& \

59 p i p i n s t a l l −−no−cache − d i r −− upgrade c f f i && \

60 p i p i n s t a l l −−no−cache − d i r −− upgrade s e t u p t o o l s && \

61 p i p i n s t a l l − r ${COWRIE_HOME} / cowrie − g i t / r e q u i r e m e n t s . t x t && \

62 p i p i n s t a l l − r ${COWRIE_HOME} / cowrie − g i t / r e q u i r e m e n t s − o u t p u t . t x t

63

44

5 Experiment

64 FROM ${ARCH} / d e b i a n : b u s t e r − s l i m AS r u n t i m e

65 LABEL m a i n t a i n e r =" Michel O o s t e r h o f < m i c h e l @ o o s t e r h o f . ne t >"

66

67 ENV COWRIE_GROUP= c ow r i e \

68 COWRIE_USER= c ow r i e \

69 COWRIE_HOME=/ c ow r i e

70

71 RUN groupadd − r −g 1000 ${COWRIE_GROUP} && \

72 u s e r a d d − r −u 1000 −d ${COWRIE_HOME} −m −g ${COWRIE_GROUP} ${COWRIE_USER}

73

74 RUN e x p o r t DEBIAN_FRONTEND= n o n i n t e r a c t i v e ; \

75 ap t − g e t u p d a t e && \

76 ap t − g e t i n s t a l l −y \

77 −o APT : : I n s t a l l − S u g g e s t s = f a l s e \

78 −o APT : : I n s t a l l −Recommends= f a l s e \

79 l i b s s l 1 . 1 \

80 ca − c e r t i f i c a t e s \

81 l i b f f i 6 \

82 p r o c p s \

83 python3 \

84 python3 − d i s t u t i l s && \

85 rm − r f / v a r / l i b / a p t / l i s t s / * && \

86 l n −s / u s r / b i n / py thon3 / u s r / l o c a l / b i n / py thon && \

87 l n −s / u s r / b i n / py thon3 / u s r / l o c a l / b i n / py thon3

88

89 COPY −−from= b u i l d e r ${COWRIE_HOME} ${COWRIE_HOME}

90 RUN chown −R ${COWRIE_USER} : ${COWRIE_GROUP} ${COWRIE_HOME}

91

92 ENV PATH=${COWRIE_HOME} / cowrie − g i t / b i n : ${PATH}

93 ENV COWRIE_STDOUT= yes

94

95 USER ${COWRIE_USER}

45

5 Experiment

96 WORKDIR ${COWRIE_HOME} / cowrie − g i t

97

98 # p r e s e r v e . d i s t f i l e when e t c / volume i s mounted

99 RUN cp ${COWRIE_HOME} / cowrie − g i t / e t c / c o wr i e . c f g . d i s t ${COWRIE_HOME} / cowrie − g i t

100 VOLUME [" / c ow r i e / cowrie − g i t / v a r " , " / c ow r i e / cowrie − g i t / e t c "]

101 RUN mv ${COWRIE_HOME} / cowrie − g i t / co wr i e . c f g . d i s t ${COWRIE_HOME} / cowrie − g i t / e t c

102

103 ENTRYPOINT [" c ow r i e "]

104 CMD [" s t a r t " , "−n "]

105 EXPOSE 2222 2223

This docker image is the base image which is adapted with various configurations. The configuration files

can be seen at the readme file of the project5. These files need to be copied to the allocated places, which is

why further modified docker images of cowrie were made. Listing 5.4 shows an example which only uses

the standard configuration file. The image mount-fuji represents the standard image build before with the

command seen in Listing 5.3. When modifying the standard image via another dockerfile, it enables the

operator to adjust the honeypot without continuous access to the internet. The standard image is fetched

locally; only when updating the software, external resources are required.

Listing 5.3: Build a docker image

1 # − t s p e c i f i e s t h e t a g o f t h e image

2 # . r e p r e s e n t s t h e l o c a t i o n o f t h e D o c k e r f i l e

3 do c ke r b u i l d − t mount − f u j i .

Listing 5.4: Modify docker image of cowrie to configuration

1 FROM mount − f u j i

2 COPY c ow r i e . c f g / c ow r i e / cowrie − g i t / e t c /

3 COPY −−chown= co w r i e : co w r i e e n t r y . sh / c ow r i e / cowrie − g i t /

4 RUN chmod a+x / c ow r i e / cowrie − g i t / e n t r y . sh

The honeypot was set to listen to the standard SSH port 22/tcp, without telnet. The management ssh port

was a custom port. Which port to use as a lure port depends on the organisation. The lure port (the port

on which the honeypot listens) should be the standard SSH port. If the company uses 22 as a standard, this

5https://github.com/cowrie/cowrie

46

https://github.com/cowrie/cowrie

5 Experiment

port should be used as lure port and a custom port should serve as management port. If the company uses a

custom port as a standard, the custom port should be used as lure port and another custom port needs to be

the management port. Never use the port 22/tcp as a management port for the honeypot, as attackers would

find this port very quickly. As part of the hardening, the management access was restricted to workstations

of the administrators, the lure port was set open to the internal network.

To ensure, that the honeypot always runs, even after a reboot, a simple docker-compose file (Listing 5.5) was

called. It defines a service fuji01, which depends on the latest image mount-fuji and binds the host port 22

to container port 2222.

Listing 5.5: Docker-compose.yml to keep the container running

1 v e r s i o n : " 3 . 3 "

2 s e r v i c e s :

3 f u j i 0 1 :

4 image : " mount − f u j i : l a t e s t "

5 e n t r y p o i n t : . / e n t r y . sh

6 p o r t s :

7 − " 2 2 : 2 2 2 2 "

8 r e s t a r t : " a lways "

To log the usage of the honeypot, the docker daemon was configured to send anything written to stdout in

a container to the syslog daemon of the host. Cowrie prints any log to stdout. No logging configuration

of cowrie itself was used. The modified entry point directs to a script (Listing 5.6) that aims to exclude all

sensitive strings given from logs. As the honeypot prints all user entered strings to stdout which get send to

log servers, sensitive information must be prevented on being printed to stdout. This could include common

passwords, as administrators are not aware of the honeypot and may try to login with these. Only write

part of the sensitive string, to not disclose the whole string inside a common attacked asset. The command

grep -vi removes any line with any case insensitive string matching.

Listing 5.6: Modified entry script (entry.sh) to exclude sensitive strings from logs

1 # ! / b i n / bash

2 co w r i e s t a r t −n | g r ep − v i < P a r t o f a s e n s i t i v e s t r i n g >

To monitor the usage of the honeypot, an alert was implemented into a monitoring system. Any occurrence

of the strings “cowrie” in combination with “new connection” triggers a real time alert being send to the

respective administrators for further investigations.

47

5 Experiment

5.2 First contact

While the setup of the honeypot was made, the first contact of the honeypot with the organisation happened.

While some personnel was present in the office, some were working from home and some were on holiday.

Next a timeline of what happened on the first day is shown.

• Day 1, 09:00 - Asked about some Unix questions, administrator A (who is in the office) asks what this

is all about. When answered this would be a project for manager B, no further questions were asked.

• 10:00 - When issued a ticket about a firewall change and assigned to manager H (who is not in the

office), administrator A, who gets all firewall tickets as an email copy mentions, that he finds no

commission checklist about the requested server. The checklist already exists, but administrator has

no access to it. Administrator A is answered with "Oh, well, yes. I am going to do it now".

• 14:00 - Administrator A mentions, the checklist still lacks.

• 14:10 - A ticket about the server commissioning is created, which is mandatory due to the checklist.

This was not intended in the first place, but made due to the requests of administrator A.

This triggers a massive reaction. Administrator A gets suspicious and starts an investigation. As the

assets is documented in the IP list and an entry exists at the DNS server, he starts trying to connect

via SSH, RDP and looks for the server in the hypervisor overview. (SSH honeypot is not productive

at the moment.)

• 14:20 - Administrator A starts looking for the server in the server room. He mentions, that this might

be a Raspberry Pi, as he saw some new ARM configuration in the automation framework.

• 14:30 - Administrator A searches the SIEM. As the honeypot is not productive, no specific logs, other

than generic network traffic (DNS, NTP, etc.) is seen.

• 14:41 - Administrator M (who is not in the office) requests a better description of the use case of the

server in the ticket issued at 14:10.

• 14:42 - A request for permission to access the exact checklist in the documentation system is issued

by administrator A. This means, the site has been found. He admits, that simple URL searching made

him find it, as all checklists have the same prefix and the hostname as URL. Also, the documentation

system did not return a 404 not found error message, but a 401 authorisation required.

• 14:47 - Administrator A starts searching all switches for newly connected devices, but cancels, as it

takes too long, and he does not know what to look for exactly.

• 15:00 - Administrator A finds the open management port, but fails to login.

• 15:15 - Administrator A is told to search the management password safe again for credentials.

48

5 Experiment

• 15:30 - Administrator A mistakes the honeypot for a conpot6 honeypot, as the bash history lists a

conpot command.

• Day 2, 10:00 - Administrator A coincidentally finds the correct MAC-address in a firewall log but

does not investigate it any further.

The first contact to the device was due to an erroneous ticket announcement by the author of this study.

This ticket was not intended to be sent as an email to a group of administrators, but only to manager H,

who is the product owner. Therefore the first contact was already early. This triggered the request for

documentation. The provided documentation was only a project name (Mount Fuji), which did not satisfy

the present administrator. There was to few information and to much shady pieces of information placed

which triggered the investigation. A fake description could have prevented this. The investigation itself was

executed very fast, which left no time to adjust anything, but only to log the happening. At the end of day 1,

administrator A already knew the real purpose of the device, but does not know the location of it. As a result

of this investigation, it is recommended to setup the device completely offline or of company and implement

it into the companies network already fully operational.

5.3 Second contact

When the setup was done, a second contact from another team happened with the system. Again, a timetable

is presented. This timetable also results from log entries.

• Day 7, 10:50-11:10 - A login attempt on the honeypot happened by administrator C.

• 11:40 Manager F asks manager H about the asset. Manager F is the supervisor of administrator C.

Manager F and administrator C already know its a honeypot. Manager F mentions, that the project

description lacks detail and administrator C was wondering about the backup concept and where it is

located.

• 11:40-11:50 - A successful login attempt. Administrator C starts searching the file system.

After examining the log entries, administrator C was asked about the events. When coming back from a

holiday, he was triggered by the undetailed ticket about a new server commissioning. The server description

in the ticket was only the project name, which did not satisfy him. He did not receive any email but browsed

through older tickets to catch up what happened during his absence. Although, it was clearly a server

with a code name and restricted documentation, he thought that being part of the infrastructure team, he

needs to know the purposes of any servers present. Administrator C asked his manager F, if he knows

6https://github.com/mushorg/conpot

49

https://github.com/mushorg/conpot

5 Experiment

something about it. Manager F questioned manager H, the product owner, about the asset, but manager H

only returned a generic answer. Manager F was satisfied with the answer and returned it to administrator

C, who was not satisfied and started a further examination. He asked administrator A, an administrator

of another team, about the asset, who answered also with a generic response, which still did not satisfy

C. The following consideration was made. The asset is in the standard domain and accessible over SSH,

therefore the standard backup SSH password should grant access. Administrator C logged into the system

with this password on port 22, which is the honeypot. The honeypot is configured to grant access with any

user/password combination. After seeing some old system descriptions including /etc/os-release, indicating

a debian 7 (Wheezy), the first assumptions on a security system was made. When logging out and in again

with generic credentials, it was clear that this is a honeypot.

Again, the undetailed description in the ticket, resp. the ticket itself, triggered the initial investigation.

Although, administrator C did not receive an email about it, he still found it in the ticketing system while

browsing through old tickets. The first questions about the asset were raised to the direct manager, who was

satisfied with a generic answer, but this answer did not satisfy an administrator. As the honeypot was poorly

configured, it was busted very fast and the real purpose of the asset was clear to the administrator.

5.4 Third contact

The third contact differs very much in the behaviour of the administrator. Administrator M (14:41 from the

first contact) asked the project assignee about the project name and the purpose, three weeks after the initial

contact during a lunch break. He was told to ask again the next day, when only the selected participants are

present. Administrator M noticed the project via the erroneous ticket. After a quick research, he found some

bread crumbs in the automation system, but did not guess the purpose of the project. He admits to already

asked administrator B about the project who also did not know anything about it and tried to find a web

Graphical User Interface (GUI) in a browser. Due to lack of time and interests, administrator M stopped

investigating at this point. When being to that this is a confidential project, administrator M lost completely

interest and did not investigate any further.

Once again, the initial trigger was the erroneous ticket announcement. Due to the lack of access to other

information and the lack of time resources, it was not investigated any further. The purpose of the network

device is still unknown to administrator M.

50

5 Experiment

5.5 Qualitative evaluation

The described contacts match in some details and differs in others. This will be evaluated in the follow-

ing paragraphs. Unfortunately, only the first contact is documented with detailed timestamps to clearly

understand the approach of investigation. No investigation was carried out simultaneously to another one.

Participants who already knew the real purpose did not declassify it to requesting other parties.

• The ticket: The initial trigger was the ticket at every contacts. The ticket started all investigations.

The difference is, that an email announcement started the investigation twice, while the sole existence

of the ticket started the investigation once.

The ticket was part of the standard procedure for installing a new server and was chosen to do so, to

make the honeypot look more valid and as part of the documentation of the server. To mitigate such

a trigger, the documentation could be separated completely, or complex permission settings could be

applied to the ticketing system. Also, announcing such tickets via email or similar must be avoided.

• Investigating staff groups: The only investigating staff were administrators. No other group of Ta-

ble 4.1 had noticed anything unusual and asked questions or investigated on their own.

• Location of the investigating staff: All three investigator were at a different place at the time of the

start of the experiment and therefore while the ticket was issued. Administrator A was in the office,

next to the executive of the experiment. Administrator M was in home-office at that time, while

administrator C was on vacation and therefore started the investigation later on. The hypothesis, that

older information (tickets, emails, etc.) are not interesting when coming back from a holiday has not

been confirmed.

• Starting time of the investigation: All three investigations differ in the starting time. Administrator A

started immediately after the ticket issuing. Administrator M noticed the device, when the ticket was

issued, but did start a first questioning weeks after it. Administrator C started the investigation a week

after the ticket issuing, when returning from a vacation.

• Contact person: Administrator A asked the project assignee directly, administrator M asked admin-

istrator B, and administrator C asked manager F. The first contact persons all have in common to be

in the same room, when the device is detected. Then, the chain of contact differs. Administrator M

asked the project assignee after an unsatisfactoring answer from administrator B, while manager F

asked manager H about the project and returned the answer to administrator C. Staff prefers to talk to

people at the same level (the project assignee is also an administrator).

• Order of investigation: Administrator A and C started searching the documentation, connecting via

51

5 Experiment

common management methods (SSH, RDP, etc.) and finally asked the contact person. Administrator

M checked the documentation first, but asked the contact person without connecting first. Ques-

tioning the assignee was always the last option. Manager F although directly asked manager H. No

consultation of the documentation was made.

• Connecting: To connect to the device, SSH on various common ports and RDP has been tried. Also,

it has been looked for the device on the hypervisor to directly connect to.

• Physical access: Administrator A and C did not find any occurrences of the device in the hypervisor

and assumed it to be a physical device. Therefore, administrator A started an investigation to search

the server room.

• Duration of investigation: The duration of the investigation of administrator A was about an hour.

The investigation of administrator C lasted for half a day, while the investigation of administrator M

lasted around an hour over three weeks.

• Intention and intensity of investigation: Administrator A was simply interested in the challenge and

compared it to a Capture-the-flag (CTF) contest. His intensity of investigation was rather high. Ad-

ministrator C wanted to secure the full knowledge of his understanding of the network and server

infrastructure. His investigation was also quite intense. Both revealed the true purpose of the device.

Administrators M intention was to ensure, that it is no malicious device. His investigation was not

intense and he did not reveal the true purpose. Manager F did not do an intense investigation, as he

was only asking manager H about administrator Cs request. Manager F also did not reveal the true

purpose. The more a personal nature an investigation is, and the more curious a person is, the more

likely it is to reveal the true purpose.

To summarise the enumeration, the announcement of the ticket triggered some administrators but not all,

otherwise the sole existence of the ticket triggered also an administrator. The approach to submit such tickets

when sound administrator are out of office failed, as the ticket was found when returning from vacations.

An interesting result is, that always the person next in the office has been the first contact, although the

corresponding contact for that project has always been clear. Also, the different staff groups preferred to

question their own staff group. The administrators asked an administrator first, while the managers asked

a manager first. The administrators also questioned the documentation first, tried various things to connect

to the device and asked somebody last, while the managers asked somebody first and then questioned the

documentation.

When considering all various detection vectors, the documentation and routine was the initial detection

trigger. To hide or disguise the documentation is an essential and critical part of such a project. Most assets

52

5 Experiment

of section 4.2 have been discovered and revealed, all being either organisational or network assets. An

virtual device would also have been found, nevertheless the location of the physical device although has not

been found, although it has been clear to some administrators that it is a physical device.

To generalise the qualitative evalutation to the personality of the test persons: The more personal motivated

someone is, the more assets will be found and the more likely it is that the person discovers the real purpose

of the device. The more personally interested a person is, the less effective are empty phrases and referrals

to other persons and projects.

5.6 Quantitative evaluation

As well as a qualitative evaluation a quantitative evaluation needs to take place to get a better understanding

of this research.

On day 1, a Wednesday, the device was planted and documented according to the companies commissioning

process. An email to about this step was sent to five people, four administrators including one, who already

knew about the project and one manager, who also knew about the project. Therefore three administrators

who did not know anything about the project received an email about it. Two started an investigation.

Another administrator started an investigation solely from the existence of a ticket, as well as a manager,

the CIO who started a faltering investigation after being informed by an administrator. This results in

three administrators and one manager who investigated the project. Five administrators did not start any

investigation about the project, as well as no other role of Table 4.1 - DPO, documentation manager, security,

operator, DevOps, Procurement or Accounting, or a passerby - raised any questions.

Two administrators started the investigation on day 1. One revealed the true purpose the same day, while

the other finished investigating after three weeks without succeeding. The third administrator started the

investigation on day 7, the first day after return from being out of office, as well as the manager when being

informed from the third administrator. Both completed their quest the same day; the administrator revealed

the true purpose, the manager only got told some empty phrases. No one started an examination after the

first day, except people being out of office.

None of the persons, who have been categorised critical according to Table 4.1 have discovered the true

purpose of the project, while administrators are the most dangerous staff group when trying to hide or

disguise a network device.

53

6 Conclusion

This work showed some theoretical approaches on how to disguise and hide honey systems to personnel of

an organisation to reveal an insider threat and attackers already operating from the inner network. Four key

research questions have been asked, followed with some intermediate questions. The intermediate questions

have already been answered in chapter 4 and confirmed in chapter 5. To get an overview of the task and

answer the question “From which staff can a honey system be hidden?”, all involved personnel and assets

of a network device has been listened. These lists have been used to create a matrix on who needs access to

which asset and to what information level. It was concluded that there exist three groups: People who need

full knowledge about a honey system, people with fake knowledge and people with absolutely no knowledge

about it.

Some technical and organisational aspects (subsection 2.4.3) were mentioned which need to be in mind

when hiding or disguising a honey system. To answer the question “How to hide a honey system to the

inside?” it needs to be answered what exact purpose the system has, which threat it targets and which

system should be used. This will lead to the question if it is recommended to hide or disguise a system.

A description of various attack threats (section 4.5) and hideability (section 4.7) have been made. When

comparing the hideability of devices deciding between a virtual and physical device, it needs to be noticed

that administrators are the staff group which will most likely detect the device. Therefore a focus needs to

be hiding the device from administrators. A small physical device is easier to hide from administrators than

a virtual machine. Unfortunately, most SBC have an ARM architecture which mostly requires additional

work to run community software (even with platform independent scripting languages). Also, a comparison

of various team constellation has been created. When establishing this project it is essential to have a

compulsory transfer routine established in case the product owner leaves the organisation. A team approach

minimises the risk of a loss of control over the honey system when a specific administrator leaves the

organisation.

It is recommended to only hide a system only if necessary and clues about an insider threat already exists.

Hiding a network device, respectively a honey system, bears a lot of risks and is difficult to accomplish and

55

6 Conclusion

maintain. If possible, disguised systems should be created with a multiple team approach, therefore two or

more teams maintaining honey systems only known to them. This lowers the risk of any liability problem, as

any participating team gets surveyed by another team, and no feelings about injustice will rise in the teams,

as this behaviour of honey systems would be a common procedure and present in the organisational culture.

“Which honey systems can be hidden to the inside?” depends on the answering of the previous two key

research questions. In section 4.7 a good overview was given. All considered honey systems (honeypots,

honeynets, honeywalls and honeytokens) can be disguised, although honeytokens are the easiest system

followed by honeynets, honeywalls, and honeypots. Hiding a system has different prerequisites and needs

other precautions been made. Again, honeytokens are the easiest to hide but the other systems differ. Hon-

eypots are easier to hide than honeynets and it is not clear if honeywalls, because of their routing behaviour,

can be hidden at all. While working on this project, further organisational and legal questions arised, which

strongly depend on the organisations structure and the legal landscape of the respective country. Such a

project needs a extraordinary planning in advance. The device needs to be prepared before inserting to the

network, as well as the documentation should already exist when inserting the device. It is recommended to

test and build anything in a non-organisation related network.

This leads us to the last question “Does it make sense to hide a honey system to the inside?”. Adding a

hidden or disguised honey system to the network is recommended if a specific goal is defined and enough

resources, as well as capable, trustworthy staff is available to perform such a project. Every organisation

needs to determine themselves if the goal of such a the project is worth the money and time resources spent.

6.1 Future Work

To improve the results of this work, the experiment needs to be redone in other organisations with different

staff to validate the results. Also, experiments with other honey systems in other constellations need to be

conducted.

This work did not consider the existence of any fake L7 application. Also, the experiment had none imple-

mented. Future research may include a fake L7 application and may analyse if one improves resilience to a

disguised honey system and is efficient to time and money resources.

More research needs to be done to improve the storing of infrastructure code of the device. How to securely

store and hide infrastructure code in a SMB or large company?

56

List of Figures

2.1 A honeynet, which consists of honeypots, duplicating the production system and being sepa-

rated by a honeywall. The honeywall routes legimite users to the production network (white

hosts) and attackers to the honeynet (yellow hosts). 6

2.2 An overview of the zone concept of Petrunić in terms of honeytoken defense. Zone 0 repre-

sents the perimeter border where no honeytoken is placed. Zone 1 is the web server which

hosts the web application. Zone 2 portrays the web application, which reacts directly to an

attacker when using a honeytoken. Zone 3 is the database. The database hosts honeytokens

as database entries. It can trigger actions when a specific entry is accessed [3]. 12

2.3 Visualisation of a bot controller trying to verify if the infected host is a normal infected

machine or an infected honeypot. The bot controller commands the infected machine (bot)

to attack a list of hosts including a sensor. The bot attacks the given list of computers and

sends a “Mission accomplished” to the bot controller. A honeypot would not attack other

hosts but reports a “Mission accomplished” to the bot controller. The sensor reports to the

bot controller that it got attacked by that specific host. The bot controller correlates reports

of the sensor with his list of probably infected machines and verifies the infection and is thus

able to identify honeypots [33]. 15

5.1 The Raspberry Pi from the experiment placed in the back of a network distribution cabinet.

On the left side, some network devices are stacked. It is placed behind a cover, so it is not

visible when looking through the glas door or even when opening it. 42

57

List of Tables

2.1 Comparison of various honeypot implementations. 14

4.1 • - Knows the real purpose of asset. � - Does not know the real purpose. The table lists

roles and assets derived from the OSI layers. Roles and assets are described in section 4.1

and section 4.2. Extended information about the matrix is given in section 4.3. 28

58

Listings

5.1 Setting iptables back to legacy version . 41

5.2 Slightly adjusted Dockerfile to install cowrie . 42

5.3 Build a docker image . 46

5.4 Modify docker image of cowrie to configuration . 46

5.5 Docker-compose.yml to keep the container running . 47

5.6 Modified entry script (entry.sh) to exclude sensitive strings from logs 47

59

Listings

60

Glossary

ACL Access Control List

AD Active Directory

ADB Android Debug Bridge

API Application Programming Interface

BCM Business-Continuity-Management

CA Certificate Authority

CARP Common Address Redundancy Protocol

CEO Chief Executive Officer

CIO Chief Information Officer

CISO Chief Information Security Officer

CTF Capture-the-flag

DNS Domain Name System

DPO Data Protection Officer

FHIR Fast Healthcare Interoperability Resources

GDPR General Data Protection Regulation

GUI Graphical User Interface

HA High-Availability

HL7 Health Level 7

61

Glossary

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ICS Industrial control system

IP Internet Protocol

LDAP Lightweight Directory Access Protocol

MAC Media Access Control

MITM Man-in-the-middle

MotD Message of the Day

NDA Non-Disclosure-Aggreement

NIC Network interface controller

NIDS Network Intrusion Detection System

NTP Network Time Protocol

OS operating system

OSI Open Systems Interconnection

OT Operational Technology

PKI Public Key Infrastructure

RDP Remote Desktop Protocol

SBC Single Board Computer

SCADA Supervisory Control and Data Acquisition

SIEM Security Information and Event Management

SMB Small and Medium Businesses

SMTP Simple Mail Transfer Protocol

62

Glossary

SNMP Simple Network Management Protocol

SSH Secure Shell

STIX Structured Threat Information eXpression

SVM Support-Vector-Machine

TAXII Trusted Automated eXchange of Indicator Information

TCP/IP Transmission Control Protocol

VCS Version Control System

VRRP Virtual Router Redundancy Protocol

WAF Web Application Firewall

63

Bibliography

[1] B. Cheswick, “An evening with Berferd in which a cracker is lured, endured and studied,” in In Proc.

Winter USENIX Conference, USENIX, Jan. 20, 1992.

[2] Paul Lackner., “How to mock a bear: Honeypot, honeynet, honeywall & honeytoken: A survey,” in

Proceedings of the 23rd International Conference on Enterprise Information Systems - Volume 2:

ICEIS,, INSTICC, 2021, ISBN: 978-989-758-509-8. DOI: 10.5220/0010400001810188.

[3] R. Petrunić, “Honeytokens as active defense,” in 2015 38th International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO), MIPRO, 2015. DOI:

10.1109/MIPRO.2015.7160478.

[4] Niels Provos, HoneyD: A Virtual Honeypot Daemon, 10th DFN-CERT Workshop, 2003.

[5] Fabien Pouget, Marc Dacier, and Hervé Debar, “Honeypot, Honeynet, Honeytoken: Terminological

issues,” Institut Eurécom (EURECOM), Sophia Antipolis, France, Research Report RR-03-081, 2013.

[6] Lance Spitzner, Honeypots: Tracking Hackers. Addison Wesley, 2002, ISBN: 0-321-10895-7.

[7] R. Baumann and C. Plattner, “Honeypots,” M.S. thesis, ETH Zürich, 2002.

[8] The Honeynet Project, Know Your Enemy: Defining Virtual Honeynets, 2002.

[9] ——, Know Your Enemy: Honeynets, 2001.

[10] Lance Spitzner, “Honeypots: Catching the Insider Threat,” in 19th Annual Computer Security Appli-

cations Conference, 2003. Proceedings., IEEE, 2003, ISBN: 0-7695-2041-3. DOI: 10.1109/CSAC.

2003.1254322.

[11] David Dittrich, Customizing ISOs and the Honeynet Project’s Honeywall, 2004.

[12] Christoph Malin, “LureBox - Using Honeytokens for Detecting Cyberattacks,” M.S. thesis, UAS St.

Pölten, 2017. [Online]. Available: http://phaidra.fhstp.ac.at/o:2588.

65

https://doi.org/10.5220/0010400001810188
https://doi.org/10.1109/MIPRO.2015.7160478
https://doi.org/10.1109/CSAC.2003.1254322
https://doi.org/10.1109/CSAC.2003.1254322
http://phaidra.fhstp.ac.at/o:2588

Bibliography

[13] B. Bowen, S. Hershkoop, A. Keromytis, and S. J. Stolfo, “Baiting Inside Attackers Using Decoy

Documents,” in International Conference an Security and Privacy in Communication Systems, Se-

cureComm, Springer, 2009.

[14] Iyatiti Mokube and Michele Adams, “Honeypots: Concepts, approaches, and challenges,” in Proceed-

ings of the 45th Annual Southeast Regional Conference, ACM-SE, Winston-Salem, North Carolina,

2007, ISBN: 9781595936295. DOI: 10.1145/1233341.1233399.

[15] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish Jena, “Honeypot in network secu-

rity: A survey,” in Proceedings of the 2011 International Conference on Communication, Computing

& Security, ICCCS, Rourkela, Odisha, India: ACM, 2011, ISBN: 9781450304641. DOI: 10.1145/

1947940.1948065.

[16] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias Fischer, “Hostage

- a mobile honeypot for collaborative defense,” in Proceedings of the 7th International Conference

on Security of Information and Networks, SIN, 2014. DOI: 10.1145/2659651.2659663.

[17] E. Vasilomanolakis, S. Srinivasa, and M. Mühlhäuser, “Did you really hack a nuclear power plant?

an industrial control mobile honeypot,” in 2015 IEEE Conference on Communications and Network

Security (CNS), 2015. DOI: 10.1109/CNS.2015.7346907.

[18] Jianguo Ren, Chunming Zhang, and Qihong Hao, “A theoretical method to evaluate honeynet po-

tency,” Future Generation Computer Systems, 2020, ISSN: 0167-739X. DOI: 10.1016/j.future.

2020.08.021.

[19] Karen A. Scarfone and Peter M. Mell, “Guide to Intrusion Detection and Prevention Systems (IDPS),”

NIST, Tech. Rep., 2007. [Online]. Available: https://tsapps.nist.gov/publication/

get_pdf.cfm?pub_id=50951.

[20] Zhiqiang Wang, Gefei Li, Yaping Chi, Jianyi Zhang, Qixu Liu, Tao Yang, and Wei Zhou, “Honeynet

construction based on intrusion detection,” in Proceedings of the 3rd International Conference on

Computer Science and Application Engineering, ser. CSAE 2019, CSAE, Sanya, China, 2019, ISBN:

9781450362948. DOI: 10.1145/3331453.3360983.

[21] W. Fan, Z. Du, M. Smith-Creasey, and D. Fernández, “Honeydoc: An efficient honeypot architecture

enabling all-round design,” IEEE Journal on Selected Areas in Communications, 2019. DOI: 10.

1109/JSAC.2019.2894307.

66

https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1145/1947940.1948065
https://doi.org/10.1145/1947940.1948065
https://doi.org/10.1145/2659651.2659663
https://doi.org/10.1109/CNS.2015.7346907
https://doi.org/10.1016/j.future.2020.08.021
https://doi.org/10.1016/j.future.2020.08.021
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50951
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50951
https://doi.org/10.1145/3331453.3360983
https://doi.org/10.1109/JSAC.2019.2894307
https://doi.org/10.1109/JSAC.2019.2894307

Bibliography

[22] José Tomás Martínez Garre, Manuel Gil Pérez, and Antonio Ruiz-Martínez, “A novel machine learning-

based approach for the detection of ssh botnet infection,” Future Generation Computer Systems, 2020,

ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.2020.09.004.

[23] L. Shi, Y. Li, T. Liu, J. Liu, B. Shan, and H. Chen, “Dynamic distributed honeypot based on blockchain,”

IEEE Access, 2019. DOI: 10.1109/ACCESS.2019.2920239.

[24] G. Chamales, “The honeywall cd-rom,” IEEE Security Privacy, 2004, ISSN: 1558-4046. DOI: 10.

1109/MSECP.2004.1281253.

[25] M. T. Qassrawi and Z. Hongli, “Deception methodology in virtual honeypots,” in 2010 Second In-

ternational Conference on Networks Security, Wireless Communications and Trusted Computing,

NSWCTC, 2010. DOI: 10.1109/NSWCTC.2010.266.

[26] P. Lewandowski, M. Janiszewski, and A. Felkner, “Spidertrap - an innovative approach to analyze

activity of internet bots on a website,” IEEE Access, 2020. DOI: 10.1109/ACCESS.2020.

3012969.

[27] S. Djanali, F. X. Arunanto, B. A. Pratomo, A. Baihaqi, H. Studiawan, and A. M. Shiddiqi, “Ag-

gressive web application honeypot for exposing attacker’s identity,” in 2014 The 1st International

Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE, 2014.

DOI: 10.1109/ICITACEE.2014.7065744.

[28] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and Y. Elovici, “Honeygen: An auto-

mated honeytokens generator,” in Proceedings of 2011 IEEE International Conference on Intelligence

and Security Informatics, IEEE ITSS, 2011. DOI: 10.1109/ISI.2011.5984063.

[29] Cristian Sandescu, Razvan Rughinis, and Grigorescu Octavian, “Hunt: Using honeytokens to un-

derstand and influence the execution of an attack,” in Proceedings of the 13th International Scien-

tific Conference "eLearning and Software for Education", eLSE, Bucharest, Romania, 2017. DOI:

10.12753/2066-026X-17-075.

[30] Lance Spitzner, “Honeytokens: The other honeypot,” in Endpoint Protection, Broadcom, 2003.

[31] Nguyen Anh Quynh and Yoshiyasu Takefuji, “Towards an invisible honeypot monitoring system,”

in Australasian Conference on Information Security and Privacy, ACISP, 2006. DOI: 10.1007/

11780656_10.

67

https://doi.org/https://doi.org/10.1016/j.future.2020.09.004
https://doi.org/10.1109/ACCESS.2019.2920239
https://doi.org/10.1109/MSECP.2004.1281253
https://doi.org/10.1109/MSECP.2004.1281253
https://doi.org/10.1109/NSWCTC.2010.266
https://doi.org/10.1109/ACCESS.2020.3012969
https://doi.org/10.1109/ACCESS.2020.3012969
https://doi.org/10.1109/ICITACEE.2014.7065744
https://doi.org/10.1109/ISI.2011.5984063
https://doi.org/10.12753/2066-026X-17-075
https://doi.org/10.1007/11780656_10
https://doi.org/10.1007/11780656_10

Bibliography

[32] T. D. Wagner, “Cyber threat intelligence for “things”,” in 2019 International Conference on Cyber Sit-

uational Awareness, Data Analytics And Assessment (Cyber SA), 2019. DOI: 10.1109/CyberSA.

2019.8899384.

[33] C. C. Zou and R. Cunningham, “Honeypot-aware advanced botnet construction and maintenance,”

in International Conference on Dependable Systems and Networks (DSN’06), DSN, 2006. DOI: 10.

1109/DSN.2006.38.

[34] Tomáš Bajtoš, Pavol Sokol, and Terézia Mézešová, “Virtual honeypots and detection of telnet bot-

nets,” in Proceedings of the Central European Cybersecurity Conference 2018, ser. CECC, Ljubljana,

Slovenia, 2018, ISBN: 9781450365154. DOI: 10.1145/3277570.3277572.

[35] Ramneek Puri, Bots & botnet: An overview, SANS, 2003.

[36] Ping Wang, Lei Wu, Ryan Cunningham, and Cliff C. Zou, “Honeypot detection in advanced botnet

attacks,” Int. J. Inf. Comput. Secur., 2010, ISSN: 1744-1765. DOI: 10.1504/IJICS.2010.

031858.

[37] S. Litchfield, D. Formby, J. Rogers, S. Meliopoulos, and R. Beyah, “Rethinking the honeypot for

cyber-physical systems,” IEEE Internet Computing, 2016, ISSN: 1941-0131. DOI: 10.1109/MIC.

2016.103.

[38] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix Freiling, “The ne-

penthes platform: An efficient approach to collect malware,” RAID, 2006.

[39] Pavol Sokol, Jakub Míšek, and Martin Husák, “Honeypots and honeynets: Issues of privacy,” EURASIP

Journal on Information Security, EURASIP, 2017. DOI: 10.1186/s13635-017-0057-4.

[40] Sean Barnum, “Standardizing cyber threat intelligence information with the structured threat infor-

mation expression (stix),” 2012.

[41] Julie Connolly, Mark Davidson, and Charles Schmidt, The trusted automated exchange of indicator

information (taxii), MITRE, 2014.

[42] Mark Davidson and Charles Schmidt, Taxii–overview, MITRE, 2014.

[43] TAXII™ Version 2.1, OASIS Open, 2020.

[44] Chun Wei Choo, Pierrette Bergeron, Brian Detlor, and Lorna Heaton, “Information culture and in-

formation use: An exploratory study of three organizations,” Journal of the American Society for

Information Science and Technology, vol. 59, no. 5, pp. 792–804, 2008. DOI: https://doi.

org/10.1002/asi.20797.

68

https://doi.org/10.1109/CyberSA.2019.8899384
https://doi.org/10.1109/CyberSA.2019.8899384
https://doi.org/10.1109/DSN.2006.38
https://doi.org/10.1109/DSN.2006.38
https://doi.org/10.1145/3277570.3277572
https://doi.org/10.1504/IJICS.2010.031858
https://doi.org/10.1504/IJICS.2010.031858
https://doi.org/10.1109/MIC.2016.103
https://doi.org/10.1109/MIC.2016.103
https://doi.org/10.1186/s13635-017-0057-4
https://doi.org/https://doi.org/10.1002/asi.20797
https://doi.org/https://doi.org/10.1002/asi.20797

Bibliography

[45] L.J. Janczewski and V. Portougal, “Need-to-know principle and fuzzy security clearances modelling,”

Information Management & Computer Security, 2000. DOI: 10.1108/09685220010356247.

[46] John Hendry, “Exploring CEO identities: Leadership, accountability and role,” Accountability and

Role (January 15, 2012), 2012. DOI: 10.2139/ssrn.2029284.

[47] Angelo Corallo, Mariangela Lazoi, and Marianna Lezzi, “Cybersecurity in the context of industry

4.0: A structured classification of critical assets and business impacts,” Computers in Industry, 2020.

DOI: 10.1016/j.compind.2019.103165.

69

https://doi.org/10.1108/09685220010356247
https://doi.org/10.2139/ssrn.2029284
https://doi.org/10.1016/j.compind.2019.103165

	1 Introduction
	1.1 Thesis Outline

	2 Prerequisites
	2.1 Terminology of Honeysystems*
	2.1.1 Honeypot
	2.1.2 Honeynet
	2.1.3 Honeywall
	2.1.4 Honeytoken

	2.2 Properties of Honeypots*
	2.2.1 Types
	2.2.2 Use Cases
	2.2.3 Advantages and Disadvantages of Honeypots

	2.3 Implementation Examples of various Honey Systems*
	2.3.1 Honeynets as a NIDS
	2.3.2 Honeywall
	2.3.3 Honeytokens as an Active Defense
	2.3.4 Real world implementations

	2.4 Mock the Bear, Manipulate the Honey*
	2.4.1 Find the Bear, Monitor the Honey
	2.4.2 Detect the Honey
	2.4.3 Hide the Honey

	2.5 Legal Affairs and Privacy*
	2.6 Threat Information Exchange
	2.6.1 STIX
	2.6.2 TAXII

	3 Related Work
	4 Approach
	4.1 Personnel
	4.1.1 CEO / Secretary
	4.1.2 Lawyer
	4.1.3 Accounting and Procurement
	4.1.4 IT Administrator
	4.1.5 DevOps
	4.1.6 Security
	4.1.7 Product owner
	4.1.8 Random passerby
	4.1.9 Machine Operator
	4.1.10 Data Protection Officer
	4.1.11 CIO
	4.1.12 CISO
	4.1.13 Auditor
	4.1.14 Personnel in the Audit
	4.1.15 Documentation Manager
	4.1.16 Direct Supervisor

	4.2 Properties of a Network Device
	4.2.1 Presence Assets
	4.2.2 Network Assets
	4.2.3 Project assets

	4.3 Theoretical Information Obligations
	4.3.1 Knowledge about true purpose
	4.3.2 Knowledge about fake purpose
	4.3.3 No knowledge

	4.4 Hiding or disguise a network device
	4.4.1 Hide from security services
	4.4.2 Hide Documentation

	4.5 Goals
	4.5.1 External attacker
	4.5.2 External attacker, already operating from the inner network
	4.5.3 Internal attacker

	4.6 Possible project assignee groups
	4.6.1 Single person
	4.6.2 One team
	4.6.3 Multiple teams

	4.7 Classifing Honey Systems about their Hiding Potential
	4.8 Busted?
	4.9 Busted!

	5 Experiment
	5.1 Setup
	5.2 First contact
	5.3 Second contact
	5.4 Third contact
	5.5 Qualitative evaluation
	5.6 Quantitative evaluation

	6 Conclusion
	6.1 Future Work

	List of Figures
	List of Tables
	Glossary
	Bibliography

