Information Security Management in Heterogeneous Systems -
Identifying the challenges

Paul Lackner
paul@lithilion.at

ABSTRACT

This paper discusses security from the perspective of heterogeneity,
which so far has not been in the focus of security research. After
carrying out the state of the art analysis conforming this position,
this phenomenon is further discussed. However, one of the major
conclusions derived by the authors is that a secure heterogeneous
environment is an achievable goal. Existing services suffer from the
problem of not having a common definition on how to communicate
with and trust each other, as well as how to choose the right service
for a specific requirement or action. To address this gap, the paper
will focus on specifying the requirements for common, standardised
interfaces for specific layers. These requirements are intended to
be used for supporting the development of a more secure, diverse
system landscape. The paper then continues with discussing po-
tential use cases for the requirements and then presents still open
challenges that need a scientific solution. The major conclusions
drawn from the state of the art analysis are again summarized in
the final chapter of this paper.

CCS CONCEPTS

« Security and privacy — Systems security; - Computer sys-
tems organization — Architectures; Distributed architectures;
Information systems;

KEYWORDS

heterogeneity, interfaces, data exchange, federation, standardisa-
tion

1 INTRODUCTION

As shown in the literature [18][4] and demonstrated by very wor-
rying practical examples [16], the growing heterogeneity of system
landscapes has resulted in whole industry sectors becoming vul-
nerable to cyber attacks!. This vulnerability is caused primarily
by architecture considerations not being paid enough attention
to. The problem relates back to the so called "organic growth" of
infrastructure and applications, which system developers tradition-
ally try to overcome with connecting new systems by so called
pipes. The ensuing lack of an architectural model is reflected in
today’s information security concepts. Trying to create a homo-
geneous system landscape, to mitigate classical pitfalls created by
heterogeneous systems, is also a non achievable goal, as presented
in the paper. However, had the problem be looked at from an in-
terface perspective in the first place, some of the worst security
holes caused by these "pipes" might have been avoided. That is why,
drawing on the lessons learned from leading reports [16], this paper
focuses on the need for an architectural model that is building on
an interface oriented perspective. Starting with an overview of the

https://dirtypipe.cm4all.com/

current situation and existing approaches, this paper first describes
the challenges and gaps which need to be addressed. Following the
problem description, a further analysis of vulnerabilities is carried
out. From the results of this analysis the paper derives a set of
requirements that are necessary for guiding the construction of
an architectural model capable of growing with a companies In-
formation Technology (IT) infrastructure. The final conclusions
summarised in the last chapter of the paper will serve as orienta-
tion for setting the aims the planned architecture model one has
to achieve. The practical relevance of providing such a scalable
and adaptable architectural model is expected to immediately show
through a significant reduction of attack surfaces. With this goal be-
ing achieved, it should be possible to focus the defensive measures
on a much smaller number of issues. Besides the organisational and
technical benefits, less effort needed should also help to reduce the
cost.

Apart from these practical improvements, the scientific contribu-
tion of the approach will also have significant impact, because once
the lack of architectural framework and model are overcome, new
ways of incorporating cyber security aspects in system designing
and development will be possible.

2 SECURITY, HETEROGENEOUS AND
HOMOGENEOUS SYSTEMS

To fully understand the correlation between information security
and various system architectures it is necessary to understand the
correlation of Security and Heterogeneous Systems which will get
explained in the following sections.

2.1 Core Characteristics of Heterogeneous
Systems

Finding definitions of homogeneous or heterogeneous systems in
terms of IT is surprisingly difficult. One definition of a heteroge-
neous system was found in the context of software development:
"Allow distinct computational models to coexist seamlessly [...]" [2].
Therefore homogeneous systems tend to be kindred computational
models. Heterogeneous systems are also described as a mixture
of various Operation System (OS), software stacks and libraries
(microservice context) [14], which can also be extended to vari-
ous hardware components, which gained attention after the dis-
closure of the first hardware based major-bugs Spectre [12] and
Meltdown [15].

A more complex definition is found in the context of IT service
value networks: “Heterogeneity [...] can be defined as the diversity
and alterity of the attributes of the summed applications, platforms,
infrastructures, actors, technologies, interfaces, and tools [...]” [8].
These are the elements where heterogeneity may occur through
various attributes. Table 1 shows an example matrix of the collabo-
ration of the various elements and attributes to create heterogeneity.

https://dirtypipe.cm4all.com/

Elements
g
¢=!
9 3
- %]
g | 8 E g
= 15)
< o= 2] Q 1) 8
< = g 2 —= Q
o Q - + 2] S <
< 2| €8 |5 |E|F |2
.8 Slsls e o | 8 |
. — (P} (o}
Attributes & < | R |E | |E |8 |B&
Pricing policy - X
Service Level A X |x |x
Standardisation CIA | x X |x |x |x |x
Interoperability | CIA X | x X
Performance A X
Communication | CI X | x
Version CIA |x |x |x X | x
Technology level | CIA X | x X

Table 1: An extract of the concept matrix to show the interac-
tions of practically highly relevant attributes with different
elements to toggle heterogeneity [8]. The columns represent
the elements where heterogeneity may occur through vari-
ous attributes (represented by the rows). Attributes present
in an element are marked with an "x". This extract focuses
on the element interface and shows the impact of the at-
tributes standardisation and its relative interoperability. It is
enhanced by the CIA-triad characteristic and shows the con-
tribution of each attributes to the triad. Therefore the triad
characteristic for an attribute applies to all intersections of
that attribute with an element.

Diversity is described as the number of different elements, while
alterity describes the differences between two elements. The al-
terity between a Windows and Ubuntu system is much higher,
than between a Debian and Ubuntu system. They also identified
various attributes which are differently matched to the respective
enumerated elements. The elements application/software, platform,
and infrastructure can be seen equal to their "as a service" cloud
pendant. Actors are all participating members in a service network.
Technologies are meant as the communication methods, interfaces
as the offered possibilities of a service (Application Programming
Interface (API), protocols), and tools as the tools to use and manage
the service.

Another paper generically describes heterogeneity as a statistical
property for the measurement of the diversity of given character-
istics in IT systems [28]. It is proposed that heterogeneity may be
calculated through the Herfindahl-Hirschman-Index (HHI) [9] or
Entropy Measure [10]. Both indexes are used in economics as well
as in biology to calculate and measure diversity of firms and the
bio ecosystem. The HHI indicates a diverse ecosystem by resulting
in a low index, while the Entropy Measure results in a high index.
Furthermore they define, that the more different values for a dis-
tinctive attribute are, as well as the higher the disparity of these
values are, the higher is heterogeneity.

Lackner

Good heterogeneity is a wanted, controlled, and understood
mixture of various hardware and software stacks, while bad het-
erogeneity is the mixture of various hardware or software versions
due to the lack of a working substitution and update process.

2.2 Security in Heterogeneous Systems

To apply security to a system, all elements of that system need to
be in focus. Table 1 shows an extract of attributes and elements
where heterogeneity may occur in a system. This means that these
attributes and elements are present in systems, therefore they need
to get addressed in security considerations. As this paper already
showed, heterogeneity is measured as a statistical value with a lot
of elements and attributes to consider, which means the chances
of finding a real homogeneous system is very low. Also, if compar-
ing homogeneous systems and heterogeneous systems, the only
difference is that the elements and attributes have the exact same
value at homogeneous systems, and differ in heterogeneous sys-
tems. Therefore, to simplify security considerations, it is proposed
to always consider all elements and attributes as present and given
in a system. Standardisation of shared infrastructure always helps
in developing heterogeneous systems [18]. Table 1 also shows the
contribution of each attribute to the CIA-triad. This paper further
aims to simplify security definitions as well as any other interoper-
ation definition by proposing the definition of common interfaces,
the most crucial part of heterogeneous systems.

2.3 Understanding Interface Structure

An API is required for communication between different applica-
tions and application parts. It is used to exchange data and instruc-
tions between different computational parts. An API defines the
name of the interface as well as the required parameters and its
output. Some programming concepts refer to interfaces for sim-
ple functions (i.e.: HTTP APIs), whereas other concepts (Object-
Oriented Programming (OOP)) refer to interfaces as simple class
definitions, which defines class input parameters and functions of
a class. An interface is mostly described as a formal definition of
a desired action which still needs to be implemented. The JAVA
documentation refers to interfaces as a contract between the im-
plementing code and the outside world?. To communicate with
another part of a software, the interface needs to get published,
while the implementing code is not.
IBM lists the following main reasons for using APIs®:

o Collaboration & Innovation: APIs, especially open APIs, trig-
ger a vast collaboration process, which enables anyone to
build applications around your application and extend your
ecosystem or integrate your application into their ecosys-
tem. Either way your application will experience a higher
usage and acceptance.

o Security: Providing access to computing resources and data
over an API means to establish access control to these
resources. Authentication, Authorisation, Encryption and
other forms of security measures can be applied to secure
communication between services.

2https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
3https://www.ibm.com/cloud/learn/api

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://www.ibm.com/cloud/learn/api

Information Security Management in Heterogeneous Systems - Identifying the challenges

o Monetizing: The forms of access controls described in the
security bullet point also enables to limit access to specific
paying parties. Therefore, providing services and data can
generate an income for offering companies.

Another source lists advantages and disadvantages of interfaces
and their corresponding APIs [23]:

o Stability: Interfaces provide stability to dependent appli-
cation through an abstract layer above the corresponding
application.

o Modularisation An interface does not reflect the complexity
of its corresponding implementation but is only an abstract
description of a given method or function. A developer of
an application using such interface therefore has no need
of understanding the implementation.

e Reusage: An API enables, similar to a programming library
or function, its simple reusage.

o Interoperability: Application interfaces lack the possibility
of language interoperability. This is problem is addressed at
API level with wrapper protocols (e.g.: Hypertext Transport
Protocol (HTTP)).

o Changeability: Interfaces are very hard to change at the
moment they are used. Therefore interfaces are versioned.
Obsolete interfaces are marked as deprecated and to be
removed in an upcoming version, but changing an interface
is nearly impossible.

This paper will introduce a new approach that utilises the advan-
tages of already established interfaces as described above and tries
to remove the need of a wrapper and implement interoperability
into the given interface.

A graphical interface must be designed very clearly. If a user
does not know, what to do next, there is a problem in the interface
design [25]. This can be used in a developer/programmatic way as
well. If a programmatic interface is not well designed, a developer
may misuse the interface or implement it wrongly and therefore
gather wrong outcomes.

Interfaces and APIs are similar, but different concepts. An inter-
face only describes a wanted command, an API however consists
of an interface and its implementation. As this paper solely concen-
trates on interfaces, it sometimes references on API rules and best
practices, as long as these practices relate on the interface part of
the APIL

2.4 Inter-Process Communication

Communication between processes and application is an essen-
tial asset in IT. There are some major communication methods
defined?:

e (Berkeley) Sockets: Berkeley sockets are a de-facto standard
to establish network communication. Sockets work with
any underlying major network protocol.

o Pipe: A pipe is a unidirectional read and write channel. The
read and the write head may be on different positions. To
establish a bidirectional process communication at least
two pipes are required.

“https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-
communications
Shttps://en.wikipedia.org/wiki/Inter-process_communication

e Message Queue: A message queue is like a software im-
plementation of a BUS system. Messages are committed to
it, and chosen recipients are enabled to subscribe to these
messages and answer to them.

o File: A file is being exchanged. This might happen via disk
access on the same machine or via a network and therefore
probably a socket.

e Memory Sharing: Multiple programs on the same machine
have access to a shared memory space (RAM), where they
can read and write data and commands for each other.

o DMA-Infiniband: Infiniband is a hard- and software net-
work connection family, which is known for high-troughput
and low latency and a de-facto standard for communication
in super computers. It is an alternative protocol to ethernet,
but supports Ethernet-over-Infiniband for compatibility
reasons. Infiniband connections are similar to sockets.

Sockets are a major inter-process communication (IPC) component,
working over a network (and via localhost also on a local machine).
With the arise of microservice development and intensive cloud
usage, the usage of sockets for IPC also rises [14] compared to the
other methods. Pipes are only used locally on OS level but need a
socket to communicate over a network. As described earlier, pipes
are error prone, due to their non standardisation and are a non
desired future solution. Message queues are implemented via an
application on OS level which also need a socket for network com-
munication. File sharing is completely dependent on OS level file
behaviour and sockets for network communication. File sharing is
considered non-performing as multiple components are involved.
Memory Sharing is a very performing way of IPC, but also consid-
ered insecure, because various processes are granted access to the
same memory space, which may enable memory corruption, data
exfiltration, etc.

Sockets are the only IPC method that work independently on
a local machine and over the network. They also have an already
standardised interface to communicate with, are build for modular
usage, therefore provide a level of abstraction, which makes them
compatible with most applications, and are already used widely.
Berkeley sockets are the optimal component to enhance our desired
API standardisation approach as described in section 4. Infiniband
connections may replace sockets in a future version, but lack the
level of real world distribution compared to sockets.

3 CHALLENGES ASSOCIATED WITH
INFORMATION SECURITY MANAGEMENT
IN HETEROGENEOUS SYSTEMS

IT services are defined as intangible, perishable, and heteroge-
neous [11]. The heterogeneity rises when more complexity in the
IT service is required [28]. A challenge to establish security in het-
erogeneous systems is the vast amount of combinations of elements
and attributes to consider and their endless variations, which was
also stated by the USENIX conference: "Nevertheless, the cloud
and serverless platforms are now facing a problem that operating
systems had before POSIX: their APIs are fragmented and platform-
specific, making it hard to write portable applications"®. A reduction

®https://www.usenix.org/publications/loginonline/transcending-posix-end-era

https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://en.wikipedia.org/wiki/Inter-process_communication
https://www.usenix.org/publications/loginonline/transcending-posix-end-era

of complexity by reducing the variations of the right elements will
help. Therefore, this paper proposes to standardise the element
interface to reduce its variations and reduce complexity in this layer
which will be introduced in the next section. When standardising
the element interface to a common specification, all other elements
could easily grow in heterogeneity. When having a low hetero-
geneity in the element interface, there can be a high heterogeneity
in all other elements, while when there is a high heterogeneity
in the element interface, achieving a high functioning and secure
heterogeneity in all other elements seems unrealistic and highly
complex.

3.1 Open Challenges that Demand Scientific
Solutions

Heterogeneous, distributed systems rely on trust and reputation of
the respective services. Services just rely on other services that they
act security and privacy preserving as described above by simply
trusting them [26]. This is a huge issue as various services are op-
erated by different operators, vendors, etc. where service providers
often do not know with whom data is shared and what is done with
if (e.g.: distributed logins via SAML and OIDC). At the moment, if
data is transferred to another service or user, one renounces the
sovereignty of the data to this particular service or user. This party
is technically able to do whatever it wants to with the data. Trust
decisions and delivery of reputation to distinct services are a major
unsolved challenge [18]. Relying on the existence of service level
agreements or a centralised trust entity such as a PKI is not realistic
or does not represent the purpose of heterogeneous, distributed sys-
tems. Requesting services or systems have to decide on their own if
another service is reliable and trustworthy. In order to do this, some
orientations exists, but no common solution is standardised. This
starts at the lack of a common definition of trust and reputation
of services and continues to the different approaches to achieve
the various goals that are not compatible with each other. There is
no common understanding of the initial problem nor the goal that
needs to be achieved; e.g.: There are different algorithms to establish
trust and reputation for P2P file shares. They use PATROL-F [24]
and ad-hoc networks use PTM [1]. Both try to reach the same goal
- provide security to services via establishing trust and provide a
reputation score to services, but have a different understanding of
trust and reputation and are not compatible with each other.
When data is transferred or shared with another service this
service needs to apply the same security and privacy policies to this
data as the original service. A scientific solution to ensure a policy
enforcement of a local system to a remote (third party) system and
possible further remote systems is needed to increase the trust of
users into the software products. Some concepts, that may help in
finding a solution will be presented in the following paragraphs.
To formulate a problem description:

e How to guarantee seamless service interaction of various,
different services.

e How to guarantee policy enforcement and rightful data
usage on not-owned systems.

To solve these problems, two layers may be addressed: the interface
and the data itself. Is it possible to solve the problem of policy

Lackner

enforcement and data usage on remote systems solely via interface
descriptions?

A further problem goes with the expected federation of services.
If services can seamlessly communicate with each other, one can
assume that federation will take place. This also means that multi-
hop federation can and will happen, therefore service A federates to
service B which federates to service C. Through the seamless com-
munication service A could communicate with service C through
service B, without being directly connected, but if service B fails,
there still is a need for service A to communicate with service C.
An outage of service B must not cut of all services behind it [21]. Al-
ready existing, established solutions (Domain Name System (DNS),
OSPF, BGP, Network Time Protocol (NTP), etc.) to provide data to
federated systems are working great in their "security-version" to
provide integrity but do not consider confidentiality.
Furthermore all federation problems will align to these services [3].

3.2 Definition of Common Interfaces

This paper introduces a way to define heterogeneity based on a layer
system similar to the Open Systems Interconnection (OSI) layer or
the TCP/IP layer, which is displayed in Figure 1. The first layer will
consist of the characteristic hardware, while the third layer is the
characteristic kernel. The fifth layer consists of the characteristic
application. If the interfaces between these layers are standardised,
heterogeneity in between the layers is achieved without a high
complexity. A working example of this, would be the network
layer of the OSI layer and its standardised protocols (Transport
Control Protocol (TCP), User Datagram Protocol (UDP), HTTP,
DNS, NTP, etc.). The protocols are standardised by an international
organisation (e.g.: Internet Engineering Task Force (IETF)) and
published. An application communicating with the network (e.g.:
web server) implements the HTTP protocol to do this. There is
no need to know what application/implementation (httpd, nginx,
IIS, Firefox, Chromium, curl, etc.) this server is communicating
with, as long as both of them agree to communicate over the same,
standardised protocol.

The following standardised interfaces would be necessary:

e Hardware - Kernel

e Kernel - Application

o Application - Application
e Network

The layer "Hardware - Kernel" introduces an interface between the
hardware and drivers as well as the system kernel. This interface
will be the least complex interface of all four introduced ones, as
the possible commands of a system towards the hardware are lim-
ited. The next interface "Kernel - Application" roughly introduces
file and user management. System call interfaces will be defined
here; therefore this interface is more complex. The most complex
interface will be the "Application - Application" interface, as it in-
troduces an interface for applications to communicate with other
applications. The possibilities are endless, therefore the complexity
is the highest.

The interface "Network" already exists in a loose way and is one
of the reasons the internet as we know it today works with many
different systems involved. It is seen here solely as a transport layer,
where application interface calls are transported to another system.

Information Security Management in Heterogeneous Systems - Identifying the challenges

The network interface only serves as a sub-interface alongside the
other three interfaces.

This paper proposes to establish a common definition of inter-
face regarding their naming, output values (especially status codes)
and input parameters. The implementation of the interfaces in the
various application is out of scope and will not be regarded as it
remains an obligation to the developer of the application. The nam-
ing of these interfaces must align to a specific convention which
allows to determine the purpose of the interface by simply knowing
the name on the one side and on the other side allows the interface
to be found when looking for it. The output values as well as the
input parameters must meet common criteria. The requirements
onto parameters of various interfaces share a lot of identical aspects
and therefore parameters may be consolidated alongside various
interfaces. Therefore, the author proposes to establish a tree-based
interface architecture separated by the various introduced layers.
Therefore, interfaces from the layer "Application - Application" are
related to each other inside the layer, as well as interfaces from
the layer "Hardware - Kernel" and "Kernel - Application”. To create
appropriate interfaces, one must understand their purpose and its
requirements. In order to do this, this paper tries to categorise and
group applications. To give an example: The application MySQL
may get categorised as "database - relational"; the application Post-
greSQL will get assigned to the same category. The application
MongoDB will get assigned "database - non-relational - object store",
while Neo4j will get "database - non-relational - graph". MySQL and
PostgreSQL will use the exact same interfaces, as they are the same
type of application and will share some interfaces with MongoDB
and Neo4j. MongoDB and Neo4j will share more interfaces with each
other as with the relational databases, but not all interfaces as they
are more related to each other, but not of the same kind. All of these
applications will also relate to a complete different application, like
postfix ("Groupware - Messaging - Store and forward"), and there-
fore share some interfaces (e.g.: login interface) and/or parameters
but not many.

Two frameworks exist to categorise applications and protocols:
OSI and TCP/IP. They declare several layers which are needed
in inter-application network communication. The OSI framework
distinguishes between seven layers, while the TCP/IP framework
only knows four. This is visualised in Figure 2. When comparing
our defined layers of the heterogeneity framework with the OSI
and TCP/IP framework, it gets clear that the usermode layer of
heterogeneity matches with application layer of TCP/IP, the drivers
& hardware layer of heterogeneity matches with the link layer of
TCP/IP while the operation system layer of heterogeneity matches
with the transport and internet layers of TCP/IP. In this case, the OSI
layer provides unnecessary complexity, which is why the author
will further work with the TCP/IP framework. Also, the border
between usermode and operating system layer matches the border
of the application and transport layer which is exactly where socket
are placed. Therefore, sockets are a perfect match as a foundation
for our modular interface concept for usermode applications.

3.3 Interoperability - Standardisation of
Interfaces

A major challenge in providing heterogeneous systems is the estab-
lishment of full interoperability between systems. This challenge
may be the most important challenge. This paper proposes to estab-
lish a deep understanding of various systems, and that there is prac-
tically no such thing as a homogeneous system. Therefore system
engineering and security thoughts must focus towards heteroge-
neous systems and their interoperability. Interoperability strongly
depends on standardising the element interface. Establishing in-
teroperability means the integration of independent data sources
and the processing and accessing of the data and results as if the
distinctive systems were only one [4]. Heterogeneous systems have
a need of interoperability which opens the local system to new
vulnerabilities. Therefore a need of security in interoperability is
identified. The potential loss of control and the fear of compromi-
sation affects the implementation of shared infrastructure, while
the loss of vendor lock-ins affects the development of interoper-
able systems [20]. A new European regulation’ may increase the
future development of shared, interoperable systems and there-
fore increase the need of security in heterogeneous systems. As
already shown in the history of gaming, the definition of common,
standardised interfaces increased the usage of said systems and
increased the ecosystem around these applications. This can be
seen at the popularity of DirectX at game development® as well as
the increased usage of Linux systems in gaming after the creation
of a compatibility layer®. The requirements for interoperability
are transparency, autonomy, and security [4]. Users and programs
should access resources in a uniform way. They must be permit-
ted to access resources they have access to on the local system
and they must be denied access to resources they cannot access
on local systems. Therefore local Access Control List (ACL) must
also be enforced on shared systems. The systems must be security
preserving. A description of privacy preserving microservices has
been made [27] which can also be applied to security. They define
microservices privacy preserving when it only process data they
are entitled to and only share data with services that are entitled
to process this data. This definition can be adapted to security: A
security preserving service only allows local and remote users and
programs to access data they are entitled to on local systems and
only processes remote access requests from local and remote users
to remote systems to data they are entitled to. Of course the privacy
preserving concept also applies to security, therefore a security pre-
serving service also implements the privacy preserving principles.
The main weakness of this definition is the shift of responsibility
to a receiving service and therefore it relies on the trust of the
other service instead of an enforcement of a policy. Especially in a
microservice environment with a zero-trust security concept this
contains a certain irony. The challenges identified in this section
of the paper need to be properly addressed at the interface level to
make full use of approaches developed in leading research projects
in the fields of database systems [19][22][6] and networks. Against

"https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit- digital-
age/digital-markets-act-ensuring-fair-and- open-digital-markets_en
8https://www.pcgamer.com/history- direct-x-windows-microsoft/
https://www.slashgear.com/steam-proton-has-opened- the- gaming-floodgates-for-
linux-users-22617714/

https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/digital-markets-act-ensuring-fair-and-open-digital-markets_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/digital-markets-act-ensuring-fair-and-open-digital-markets_en
https://www.pcgamer.com/history-direct-x-windows-microsoft/
https://www.slashgear.com/steam-proton-has-opened-the-gaming-floodgates-for-linux-users-22617714/
https://www.slashgear.com/steam-proton-has-opened-the-gaming-floodgates-for-linux-users-22617714/

Interface App - Applikation

Interface
B

Interface Kernel - Applikation

Kermel A | Kernel B | Kernel C

Interface HW - Kernel

Machine A

Interface
Network

Lackner

Interface App - Applikation

Interface
B

Interface Kernel - Applikation

Kernel A | KernelB | Kernel C

Interface HW - Kernel

Machine B

Figure 1: The introduced layers of heterogeneity. The first layer represents the hardware layer, the third layer represents the
system layer, and the fifth layer represents the application layer. Between these layers is the element interface. If a standardised
interface between the various layers exists, heterogeneity in a specific layer can be achieved without a high complexity. Multiple

kernel in the same OS may seem possible.

OSlI Layer TCP/IP Layer Heterogeneity Layer
Application
Presentation Application Application
Session
Transport Transport
Kernel
Network Internet
Datalink
Hardware
Physical

Figure 2: A comparison of the OSI and TCP/IP concept. The TCP/IP concept unifies in the application layer the application,
presentation, and session layer of the OSI framework, as well as the datalink and physical layer into the link layer. Moreover
these layers can also be matched with the heterogeneity framework concept. The TCP/IP application layer represents any
usermode application, while the transport and internet layer is represented in the kernel layer. The link layer includes driver

software and the corresponding hardware.

this background the author will focus on developing a solution for
providing an interface driven perspective on information security
management in a heterogeneous system landscape. This paper will
focus on the application layer. Also, it will focus on general applica-
tions and exclude any high-performance applications, which have
special requirements.

4 INTERFACE STANDARDISATION

This paper will introduce our interface standardisation approach
via presenting it on the application layer. It will focus on general
applications and exclude any high-performance applications, which
have special requirements. Each standardised interface has a stan-
dardised defined structure concerning input, output and naming.

Information Security Management in Heterogeneous Systems - Identifying the challenges

To establish a secure standard, it is highly recommended to create
easy-to-use interfaces with a low complexity and no specifications
that are double defined (cf. heartbleed vulnerability 1°).

4.1 Application Structure

This paper introduces a comprehensive approach to standardise
interfaces. It will tackle an interface naming convention as well as
the basic structures of interfaces, therefore the author standardises
the required and optional input parameters and result of interfaces.
Our approach is based on the structuring of interfaces based on the
heterogeneity framework structure as well as the nature of every
interface. The presented structure is based on an (inverted) tree
structure, where lower levels inherit every property from above
levels. It starts at a root level where any properties are defined
that apply to all application layered interfaces. This paper starts
defining at the application level. The root level is out of scope and
may get filled with berkeley sockets. Every aspect above the root
level will be defined by the sockets, so there is no need to define
them. Below this level the levels are simply enumerated. Level 1
distinguishes between any raw kind of software type (i.e.: Database,
Groupware, ERP system, etc.), whereas level 2 distinguishes these
types into more detailed ones (e.g.: relational and non-relational
database), and so forth. Any application will be defined to be able
to get categorised through this approach to at least level 1 but may
be categorised to any enumerated level below. This structure is
presented at Figure 3.

To illustrate the concept this paper describes an example with
instant messengers. Every instant messenger mainly consist of
the same main components; texting, voice and video calls, and
file sharing, in 1-1 and 1-n chats. Logging into a messenger will
probably work via an API on the application level (every login
to a system rather has the same characteristics), while the other
API calls will probably be called on level 3 in the category instant
messaging (see Figure 3) or lower. Therefore it will be completely
irrelevant which instant messaging implementation is used, as they
all are implementing the same standardised interfaces.

A similar structure may be possible for the hardware (Figure 4)
and kernel (Figure 5) layer. The author did not sketch a network
layer, as he believes the presented structure for the application layer
includes every networking aspect and therefore a network layer
will be expendable.

4.2 Interface Architecture

Sockets have been identified to provide a solid base for the proposed
interface architecure for inter-process communication. Sockets en-
able to act platform agnostic and don’t require the caller to create
different looking requests for local and remote systems. In combi-
nation with a standardised API (standardised naming, input and
output), no Object Request Broker (ORB) or similar is required.
Therefore no central component is required in distributed systems
is needed [5]. This enables multiple opportunities for further de-
signing the architecture:

e Building on top of raw sockets - Building a new protocol on
top of raw sockets would have the big advantage of having
no dependencies except the socket itself. It would enable the

Ohttps://www.cisa.gov/uscert/ncas/alerts/ TA14-098A

usage of every transport protocol possible. Building on top
of raw sockets also has the big disadvantage of creating a
new protocol!l, therefore every aspect of every established
protocol needs to be reinvented and re-implemented.

e Building on top of HTTP - Building the new standard on
top of HTTP will lead to a new perspective. The API would
be able to use URLs and HTTP Methods to address actions
very specific. Also, such an approach would meet the needs
of the modern "microservice style" of programming.

e Building on top of a Message Queue

o Building on top of an Enterprise Service Bus

4.3 Interface Naming Convention

Standardised interfaces need to be used to be effective. Therefore,
they need to be found. Each person using interfaces must be able
to find its respective interface, thus standardised interfaces need
to be named according to a naming convention. Also, an interface
must be easy understandable for any developer to easy find and
implement [23]. An effective measurement is to name interfaces
in an easy understandable, expressive way (e.g.: "drop", "delete",
"remove" for a delete operation) and to spell them correctly. A name
for an interface needs to express exactly the interfaces purpose but
should be as short as possible. The same naming best practices
apply to parameters.

The desired naming convention will strongly address the de-
scribed tree structure (displayed in Figure 3). Each level will be
presented in the naming bottom to top with the desired action.
A login action interface to a graph database will be called login
possibly, where as a login action interface to a relational data-
base may also be called login, as this is a universal interface. An
"addEvent" action to a calendar application may look like addE-
vent_calendar_groupware, where as a "send mail" action may look
like sendMail_storeAndForward_messaging_groupware. The first de-
scribed interface starts at level 2 while the second described inter-
face starts at level 3.

4.4 Security and Privacy of Interfaces and Data

Standardised interfaces grant the possibility to establish a standard-
ised set of security measurements. This may include mandatory
data encryption through only accepting encrypted data, encryp-
tion algorithm enforcement (compare TLS (TLS) handshake), and
mandatory key and permission management. These measurements
may be a way to ensure policy enforcement of data on remote,
non-owned processes but are still in the very beginning of a draft.

4.5 Adoption and Applications

Establishing a standardised set of APIs creates a lot of possibilities
to ease the process of creating and testing applications, as well as
making the interoperable. Establishing a standard also enables to
establish standardised security. Some opinions state, that standard-
isation slows innovation, but the author states that this depends on
the implementation and scope of the standard. Therefore, the paper
will propose possible future applications which get possible with
the standard and a possible implementation and adoption process
for the market.

Mhttps://xked.com/927/

https://www.cisa.gov/uscert/ncas/alerts/TA14-098A
https://xkcd.com/927/

Lackner

Data Link Local Network
A,

Network Bus Ethernet
Transport ‘ Paralell ’ ‘ Seriell ’ ‘ UDP ’ TCP ’
Session Session

Encryption,
Presentation Encoding,

Compression
Application Application
Level 2 ‘ Relational ’ Non-Relational ‘ Calendar ’ Messaging ‘ Office ’
Level 3 ‘ Graph ’ Objectstore S}?::/;gd ‘ Instant ’

Figure 3: Interface structure for application based interfaces. Every interface is structured based on the heterogeneity framework
and TCP/IP framework and further defined through their distinctive property. The tree structure requires every property
defined in an upper level to be reflected to all lower levels. This image only shows a small extract of a possible interface
structure and may be expanded on any level except the root level. The root level may be equal to berkley sockets.

4.5.1

Standardised test-driven development. A standardised set of

APIs enables a complete new way and boost of Test-Driven-Development

(TDD). When designing an application, a set of required (standard-
ised) APIs will be identified. As the naming and in- and output of the
API is standardised, test could also be standardised, which means
tests could be created by someone else and sold to the market. If
specialised companies create tests and sell them, it will increase
quality of the tests and reduce the resource usage for test creation
to a monetary problem for software manufacturers.

4.5.2 Standardised Security Pentesting. A standardised set of APIs
also enables a standardised security penetration testing of applica-
tions. The same principle as with the standardised tests applies to
the penetration test. Moreover, powerful tests can mitigate the need
of (internal) security pentests. Therefore penetration tests will only
have the need to be executed as an external company supervising
bought products.

4.5.3 Integration in certification environment. A possible way to
increase market adoption is to implement the standardisation in
the certification environment of software and companies as fol-
lows. Software written that comply to the standard can apply to

Information Security Management in Heterogeneous Systems - Identifying the challenges

Hardware

CPU RAM

VAR

RISC CISC

Figure 4: Interface structure for hardware based interfaces.
The interface structure is based on the application layer struc-
ture without any TCP/IP dependency.

Kernel

Mono Micro

Figure 5: Interface structure for kernel based interfaces. The
structure is also based on the application interface without
any dependency.

get certified. An issued certificate will then guarantee, that the
software is able to understand requests to the standard API of the
given versions. A further part of this process is to implement a
requirement for companies use at least a specific percentage of
software, implementing the standard and therefore possessing the
certificate.

5 SUMMARY AND OUTLOOK

The challenge of addressing information security in a heteroge-
neous system environment has been discussed in the literature from
different angles, such as databases [19][22][6], applications [13][21],
and system administration [17][18]. Many of these papers clearly
point to interfaces being a problem and a solution at the same time.

That is why this paper was aimed at laying the foundation for
the introduction of a new, interface oriented perspective, which
is building on the analysis described in this paper. At the core of
this perspective is an interface oriented view of security design and
architectures.

This paper showed that homogeneity is a non achievable goal
in IT and therefore any security aspect must include heteroge-
neous systems. As initial surveys of existing literature and prac-
tices [8][28][7] show, this new approach looks promising and can
be built to claim international standards such as IEEE, etc. It is
expected that many of the current design issues, especially the
“piping mess”, can thus be avoided by providing this very focused
solution. Architecture and design are radically new ways of looking
at system environments and might be the best way forward in this
situation.

As described in this paper, the next logical step needed towards
a solution is the identification of relevant interfaces at the differ-
ent layer presented in Figure 1 and map them into a naming and
parameter scheme as described. This should ideally lead to a pure
modular IT system architecture where every component in a layer
(hardware, kernel, application) could get swapped with another
one respecting the same interfaces. This interface based approach
tries to standardise, and therefore ease, inter-process communica-
tion. It differs from any other standardisation concepts (e.g.: SQL,
POSIX, etc.) from not only concentrating at a specific system, but
addressing software architecture in its entirety. Also, it is highly
recommended, if not necessary, that this proposed architecture
and standartisation is managed and supervised by an independent
standardisation organisation (e.g.: ISO, IETF, etc.) for a strong, fast
and fair adoption. This solution only addresses the first of the two
problem descriptions (non scaling interface landscape; security
issues in todays heterogeneity), but may increase security when
adding security considerations to the future interface definitions to
contribute to the resilience of all components in a product while
maintaining full interoperability at the same time. Furthermore
automated security tests (e.g.: fuzzing, dynamic code analysis, etc.)
will get a lot more flexible and focused on specific problems, when
aligning to defined interface standards.

REFERENCES

[1] Florina Almenarez, Andrés Marin, Celeste Campo, and Carlos Garcia. 2004. PTM:
A pervasive trust management model for dynamic open environments. , 8 pages.

[2] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt. 1994.
Ptolemy: A framework for simulating and prototyping heterogeneous systems.

[3] Gang Chen, HV Jagadish, Dawei Jiang, David Maier, Beng Chin Ooi, Kian-Lee Tan,
and Wang-Chiew Tan. 2014. Federation in cloud data management: Challenges
and opportunities. IEEE Transactions on Knowledge and Data Engineering 26, 7
(2014), 1670-1678.

[4] Steven Dawson, Shelly Qian, and Pierangela Samarati. 2000. Providing Security
and Interoperation of Heterogeneous Systems. Distributed Parallel Databases 8,
1(2000), 119-145. https://doi.org/10.1023/A:1008787317852

[5] Andreas Eberhart and Stefan Fischer. 2003. Web Services. Carl Hanser Verlag.

[6] Peter Fankhauser, Georges Gardarin, M. Lopez, José Manuel Mufioz, and Anthony
Tomasic. 1998. Experiences in Federated Databases: From IRO-DB to MIRO-
Web. In VLDB’98, Proceedings of 24rd International Conference on Very Large
Data Bases, August 24-27, 1998, New York City, New York, USA, Ashish Gupta,
Oded Shmueli, and Jennifer Widom (Eds.). Morgan Kaufmann, 655-658. http:
/Iwww.vldb.org/conf/1998/p655.pdf

[7] Scott R. Gallagher. 2012. The battle of the blue laser DVDs: The significance
of corporate strategy in standards battles. Technovation 32, 2 (2012), 90-98.
https://doi.org/10.1016/j.technovation.2011.10.004

[8] Robert Heininger, Loina Prifti, Markus Bohm, and Helmut Krcmar. 2016. Towards
a Model of Heterogeneity in IT Service Value Networks: Results from a Literature
Review. In 29th Bled eConference: Digital Economy, Bled, Slovenia, June 19-22,
2016. AIS, Bled, 37. http://aisel.aisnet.org/bled2016/37

[9] AO Hirshman. 1964. The paternity of an index.

[10] Alexis P Jacquemin and Charles H Berry. 1979. Entropy measure of diversification
and corporate growth. The journal of industrial economics (1979), 359-369.

[11] Yong Jin Kim and Kichan Nam. 2009. Service Systems and Service Innovation:
Toward the Theory of Service Systems. In Proceedings of the 15th Americas
Conference on Information Systems, AMCIS 2009, San Francisco, California, USA,
August 6-9, 2009, Robert C. Nickerson and Ramesh Sharda (Eds.). Association for
Information Systems, San Francisco, 1. http://aisel.aisnet.org/amcis2009/1

[12] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[13] Lucio La Cava, Sergio Greco, and Andrea Tagarelli. 2021. Understanding the
growth of the Fediverse through the lens of Mastodon. Applied Network Science
6, 1(2021), 1-35.

[14] Paul Lackner. 2021. Security thoughts on modern software development. Master’s
thesis. UAS St. Polten.

https://doi.org/10.1023/A:1008787317852
http://www.vldb.org/conf/1998/p655.pdf
http://www.vldb.org/conf/1998/p655.pdf
https://doi.org/10.1016/j.technovation.2011.10.004
http://aisel.aisnet.org/bled2016/37
http://aisel.aisnet.org/amcis2009/1
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. CoRR abs/1801.01207 (2018). arXiv:1801.01207 http://arxiv.org/
abs/1801.01207

Lloyd’s and Cyence. 2017. Emerging Risks Report 2017 - Technology, Counting
the cost - Cyber exposure decoded. https://assets.lloyds.com/assets/pdf-
emerging-risk-report-2017-counting-the-cost/1/pdf-emerging-risk-report-
2017-counting- the-cost.pdf

Aymeric Mansoux and Roel Roscam Abbing. 2020. SEVEN THESES ON THE
FEDIVERSE AND THE BECOMING. Institute of Network Cultures, Amsterdam,
and transmediale e.V., Berlin.

Félix Gomez Marmol and Gregorio Martinez Pérez. 2010. Towards pre-
standardization of trust and reputation models for distributed and heterogeneous
systems. Computer Standards & Interfaces 32, 4 (2010), 185-196.

Sylvia Melzer, Hagen Peukert, Hongxu Wang, and Stefan Thiemann. 2022. Model-
based Development of a Federated Database Infrastructure to support the Us-
ability of Cross-Domain Information Systems. In 2022 IEEE International Systems
Conference (SysCon). 1-8. https://doi.org/10.1109/SysCon53536.2022.9773811
Justice Opara-Martins, Reza Sahandi, and Feng Tian. 2014. Critical review of
vendor lock-in and its impact on adoption of cloud computing. In International
Conference on Information Society (i-Society 2014). IEEE, London, 92-97.
Aravindh Raman, Sagar Joglekar, Emiliano De Cristofaro, Nishanth Sastry, and
Gareth Tyson. 2019. Challenges in the Decentralised Web: The Mastodon Case.
CoRR abs/1909.05801 (2019). arXiv:1909.05801 http://arxiv.org/abs/1909.05801
Tomas Skripcak, Claus Belka, Walter Bosch, Carsten Brink, Thomas Brunner,
Volker Budach, Daniel Biittner, Jirgen Debus, Andre Dekker, Cai Grau, Sarah
Gulliford, Coen Hurkmans, Uwe Just, Mechthild Krause, Philippe Lambin, Jo-
hannes A. Langendijk, Rolf Lewensohn, Armin Liihr, Philippe Maingon, Michele
Masucci, Maximilian Niyazi, Philip Poortmans, Monique Simon, Heinz Schmid-
berger, Emiliano Spezi, Martin Stuschke, Vincenzo Valentini, Marcel Verheij,

(23]

[24]

Lackner

Gillian Whitfield, Bjorn Zackrisson, Daniel Zips, and Michael Baumann. 2014.
Creating a data exchange strategy for radiotherapy research: Towards federated
databases and anonymised public datasets. Radiotherapy and Oncology 113, 3
(2014), 303-309. https://doi.org/10.1016/j.radonc.2014.10.001

K. Spichale. 2019. API-Design: Praxishandbuch fiir Java- und Webservice-
Entwickler. Dpunkt.Verlag GmbH.

Ayman Tajeddine, Ayman I. Kayssi, Ali Chehab, and Hassan Artail. 2006.
PATROL-F - A Comprehensive Reputation-Based Trust Model with Fuzzy Sub-
systems. In Autonomic and Trusted Computing, Third International Conference,
ATC 2006, Wuhan, China, September 3-6, 2006, Proceedings (Lecture Notes in Com-
puter Science, Vol. 4158), Laurence Tianruo Yang, Hai Jin, Jianhua Ma, and Theo
Ungerer (Eds.). Springer, Wuhan, 205-216. https://doi.org/10.1007/11839569_20
Edward Tenner. 2015. The design of everyday things by Donald Norman. Tech-
nology and Culture 56, 3 (2015), 785-787.

Inna Vistbakka and Elena Troubitsyna. 2020. Analysing Privacy-Preserving Con-
straints in Microservices Architecture. In 44th IEEE Annual Computers, Software,
and Applications Conference, COMPSAC 2020, Madrid, Spain, July 13-17, 2020.
IEEE, Madrid, 1089-1090. https://doi.org/10.1109/COMPSAC48688.2020.0-126
Inna Vistbakka and Elena Troubitsyna. 2020. Formalising Privacy-Preserving
Constraints in Microservices Architecture. In Formal Methods and Software Engi-
neering - 22nd International Conference on Formal Engineering Methods, ICFEM
2020, Singapore, Singapore, March 1-3, 2021, Proceedings (Lecture Notes in Com-
puter Science, Vol. 12531), Shang-Wei Lin, Zhe Hou, and Brendan P. Mahony
(Eds.). Springer, 308-317. https://doi.org/10.1007/978-3-030-63406-3_19
Thomas Widjaja, Jasmin Kaiser, Dennis Tepel, and Peter Buxmann. 2012. Hetero-
geneity in IT Landscapes and Monopoly Power of Firms: A Model to Quantify
Heterogeneity. In Proceedings of the International Conference on Information Sys-
tems, ICIS 2012, Orlando, Florida, USA, December 16-19, 2012. Association for
Information Systems, Orlando. http://aisel.aisnet.org/icis2012/proceedings/
Breakthroughldeas/3

https://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://assets.lloyds.com/assets/pdf-emerging-risk-report-2017-counting-the-cost/1/pdf-emerging-risk-report-2017-counting-the-cost.pdf
https://assets.lloyds.com/assets/pdf-emerging-risk-report-2017-counting-the-cost/1/pdf-emerging-risk-report-2017-counting-the-cost.pdf
https://assets.lloyds.com/assets/pdf-emerging-risk-report-2017-counting-the-cost/1/pdf-emerging-risk-report-2017-counting-the-cost.pdf
https://doi.org/10.1109/SysCon53536.2022.9773811
https://arxiv.org/abs/1909.05801
http://arxiv.org/abs/1909.05801
https://doi.org/10.1016/j.radonc.2014.10.001
https://doi.org/10.1007/11839569_20
https://doi.org/10.1109/COMPSAC48688.2020.0-126
https://doi.org/10.1007/978-3-030-63406-3_19
http://aisel.aisnet.org/icis2012/proceedings/BreakthroughIdeas/3
http://aisel.aisnet.org/icis2012/proceedings/BreakthroughIdeas/3

	Abstract
	1 Introduction
	2 Security, Heterogeneous and Homogeneous Systems
	2.1 Core Characteristics of Heterogeneous Systems
	2.2 Security in Heterogeneous Systems
	2.3 Understanding Interface Structure
	2.4 Inter-Process Communication

	3 Challenges associated with Information Security Management in Heterogeneous Systems
	3.1 Open Challenges that Demand Scientific Solutions
	3.2 Definition of Common Interfaces
	3.3 Interoperability - Standardisation of Interfaces

	4 Interface Standardisation
	4.1 Application Structure
	4.2 Interface Architecture
	4.3 Interface Naming Convention
	4.4 Security and Privacy of Interfaces and Data
	4.5 Adoption and Applications

	5 Summary and Outlook
	References

