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Kurzfassung
Mit dem Aufkommen der Containertechnologie und Cloud Computing wurden Microservice Architekturen

populär. Aber was sind Microservices? Warum wurden sie so beliebt und warum verändern sie die Funk-

tionsweise von moderner Softwareentwicklung? Was sind die Vor- und Nachteile von Microservice, auch

von Seiten der Sicherheit im Gegensatz zu monolithischen Services. Welche Herausforderungen gilt es zu

bewältigen und welche Lösungen gibt es bereits dazu?

Die Microservice Entwicklung wuchs erstaunlich schnell seit ihrer Entstehung im Jahr 2007, trotzdem gibt

es seither noch keine Richtlinen oder Best Practises zu einer sicheren Entwicklungsweise. Dies verunmög-

licht es kleinen Unternehmen sichere Microservices zu programmieren, da die Ressourcen für die Auffin-

dung von Problemen und Lösungen fehlen; selbst Unternehmen mit großem Umsatz arbeiten großteils nach

Gutdünken und arbeiten nach keinem Standard, weil schlichtweg kein Standard existiert.

Diese Arbeit sammelt Eigenschaften von monolithischen Services und Microservices und sammelt dazuge-

hörige Sicherheitsherausforderungen, die durch die Microservice-Architektur entstehen. Bestehende Lösun-

gen zu den Problemen werden präsentiert und diskutiert, ob diese auch sinnvoll sind. Dabei unterscheidet

diese Arbeit zwischen allgemeinen Konzepten und bereits konkreten Implementationen.

Die gesammelten Ergebnisse werden in einem Entscheidungsbaum zusammengefasst, der die Entscheidung

für oder gegen die Nutzung von Microservices im konkreten Fall erleichtern soll. Wenn Microservices er-

stellt werden sollen, gibt es dann noch eine Checkliste, was bei der Erstellung von Microservices sicher-

heitstechnisch beachtet werden muss.
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Abstract
With the advent of container solutions and cloud computing, micro services are becoming more popular.

But what are micro services? Why are they becoming so popular and why are they changing the mechanics

of modern software development? What are their advantages and disadvantages, also in terms of security,

in comparison to monolithic services? What are the challenges to overcome microservice security and what

are the existing solutions to them?

Microservice development has increased incredibly since its beginning in 2007, but still no complete guide-

line to a secure development exists, which makes in nearly impossible to small companies to really create

trustful and secure services; even high budget companies do basically what they feel like, and share no

standard as there is none.

This work collects properties of monolithic services and microservices and collects security challenges

that arise when using a microservice approach. Existing solutions to these challenges are presented and

discussed, if they are applicable. This work distinguishes between general concepts and concrete imple-

mentations.

The collection results in an decision tree, whether or not to use microservices and if so, a checklist what

security aspects needs to be considered when using them.
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1 Introduction

Flexibility. The business wants to maximise flexibility, as it removes the necessity of determination. The

flexibility capacities of companies rises with microservices combined with cloud computing, but when new

technologies arise, the security part is generally seen as an annoying annex which often seems to be forgot-

ten. Also, security is often a quite simple thing to implement, yet it needs some brainpower to invent security

controls and find already existing ones, that are appropriate for a project. The motivation of this work is to

give an overview of what has already been done, and why these things matter. Furthermore, when creating

and working on projects, what needs to be regarded and why. Security should not be a thing only gifted

people deserve but needs to be understandable and simple enough for everybody to implement in the right

way. This work aims to be a guideline on what to implement, why to implement and how to implement.

The relevance of this work is clearly visible when looking at some numbers. The microservice design

approach, inheriting some aspects of the Service Oriented Architecture (SOA) architecture, dates back to

the year 2007. Since then, the company Docker increased popularity in container technology, and its side

products. It also got a huge market push with the wide adoption of the cloud, resulting in a cloud designed

to host container and automate the orchestration via their own management tool 1. This single cloud had a

revenue of around 13 billion dollars2 which does not include any other cloud revenues. This number clarifies

the market relevance of containers and microservices. A recent study shows that a majority of companies

began using microservice during the last two years3, making it a recent topic. The US government has spent

around 18 billion dollars in 2020 to protect against cyber attacks4, while the average damage done by these

attacks to companies varies from 24.000 to 504.000 dollars, depending on the company size5. Attacks on

1https://cloud.google.com/
2https://www.cnbc.com/2021/02/02/google-cloud-lost-5point61-billion-on-13point06-

billion-revenue-last-year.html
3https://www.oreilly.com/radar/microservices-adoption-in-2020/
4https://dailycaller.com/2021/01/08/solar-winds-hack-cyber-attacks-pentagon-homeland-

security-budget/
5https://www.statista.com/statistics/1008112/european-north-american-firms-

cyberattack-cost/

1

https://cloud.google.com/
https://www.cnbc.com/2021/02/02/google-cloud-lost-5point61-billion-on-13point06-billion-revenue-last-year.html
https://www.cnbc.com/2021/02/02/google-cloud-lost-5point61-billion-on-13point06-billion-revenue-last-year.html
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://dailycaller.com/2021/01/08/solar-winds-hack-cyber-attacks-pentagon-homeland-security-budget/
https://dailycaller.com/2021/01/08/solar-winds-hack-cyber-attacks-pentagon-homeland-security-budget/
https://www.statista.com/statistics/1008112/european-north-american-firms-cyberattack-cost/
https://www.statista.com/statistics/1008112/european-north-american-firms-cyberattack-cost/


1 Introduction

infrastructure not only damage the budget of organisations but also cost lives6. Showing these numbers

visualises the need to secure infrastructure and the increasing number of microservices.

Microservices raise a new series of security issues, which were not present in traditional software design. As

microservices are individual services working together, the problem of shared infrastructure and intensive

data sharing moves to a next level. Microservices make use of container technology which has a similar

impact on the IT industry like the wide adoption of virtualisation and hypervisor and the shift to cloud

service infrastructures. Microservices summarise the problems of containerisation, virtualisation and cloud

computing. This work aims to visualise most of the problems and provides solutions for the individual

challenges. The resulting research questions of this work are:

• What are the current security challenges in the microservice approach?

• What is different to those in the monolithic approach?

• What needs to be regarded when creating a new service resp. when migrating a monolithic service to

a microservice?

• What are the current solutions to the relating security challenges?

1.1 Thesis Outline

This document is organized in several parts. In chapter 1, the topic is introduced, as well as problems,

challenges and motivation of the work. It also clarifies the research question of the work. In chapter 2 some

prerequisites and fundamental knowledge are described. The terminology of related services is described,

and also a basic property evaluation of microservices takes place. Next, the overall trends and challenges

of microservices are described. The last section describes basic security concepts which are necessary to

understand for further understanding of microservice security. Related work is listed and briefly described

in chapter 3. In chapter 4, security challenges of microservices are discussed. A layered approach of

classifying security-relevant issues is introduced. Furthermore, the various types of security measures are

described. A major part in this work are the Security Thoughts and Recommendations on Microservices.

They describe general problems of microservices regarding security and how to deal with them, followed by

section 4.4 which describes implementation-ready approaches. A short analysis of privacy issues concerning

microservices follows. The chapter is finalised with a checklist, what needs to be done and remembered

when creating and maintaining microservice structures. As every paper, this one also concludes in the last

chapter 5, followed by the annex.

6https://techhq.com/2020/09/when-cyberattacks-cause-more-than-just-digital-damage/
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2 Prerequisites

This paper discusses microservices compared to monolithic services in terms of security. The basics of the

matter, the terminology and a basic evaluation of the properties of microservices, as well as relevant basic

concepts of security are explained.

2.1 Terminology

In order to follow the topic and have a clear understanding of it, the definition of the various terms will be

described.

2.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is defined by Josuttis: “SOA is an architectural paradigm for dealing

with business processes distributed over a large landscape of existing and new heterogeneous systems that

are under the control of different owners” [1]. It has three core concepts [2]:

• Service is “an IT realization of some self-contained business functionality” [1]. They have the follow-

ing attributes: self-contained, coarse-grained, visible/discoverable, stateless, idempotent, reusable,

composable and vendor-diverse.

• “SOA interoperability in most cases is achieved via the Enterprise Service Bus that enables service

consumers to call the service providers” [2].

• Loose coupling ensures the easy maintenance by SOA. Its principle is to minimize dependencies. A

change in one service does not require a change in another service. Zimmermann states that previous

approaches to SOA computing and microservices do not differ in architectural style [3].

Also, SOA is a further approach to separation of concerns. Separation of concerns means to split a complex

problem into smaller ones and is one of the basic fundamentals of software design [4]. A program which

is sticks strictly to this principle is called a modular program. In the SOA approach concerns are separated

into services.

3



2 Prerequisites

2.1.2 Monolithic Service

Traditional software is mostly created as a monolithic service. A monolithic software is written and com-

piled as one big project, where all parts play along and cannot be split from the core application. There

is no external view into the logic of a running program (except for Reverse-Engineering and debugging

tools). Function calls happen in the inner part of the software and there is one memory management for

this software. As seen in Figure 2.1, a monolithic application includes a frontend and a backend in the

same application. Each type includes functions which can only be triggered by the program itself, except

some functions on the frontend which are explicitly designed for a user- or program- interaction.. Although

monolithic services may be built in a modular way and has parts that can be distributed [2], it still remains a

single executable artifact [5]. All the business logic, data access functions and the user interface are written

in one application.

Figure 2.1: A monolithic application sketched as described by Levcovitz et al. [6].

2.1.3 Microservice

Microservices are a completely different approach on writing software. Instead of creating one big program,

many little programs that work together are written [7] [8]. To communicate, microservices use common

methods like REST Application Programming Interface (API)s. These small services have some properties

that differentiate them from traditional programs. Pahl et al. describes microservices as “independently de-

ployable, usually supported by a deployment and orchestration frame-work, e.g., in the cloud” [7]. Usually,

to stay light-weight, microservices are deployed in a container, a light-weight virtualisation tool. Yale Yu et

al. describe microservices as follows: “A microservice is an application on its own to perform the functions

required. It evolves independently and can choose its own architecture, technology, platform, and can be

4



2 Prerequisites

managed, deployed and scaled independently [...] with its own release lifecycle and development method-

ology” [9]. Another definition of microservices is found on the website microservices.io. According to this

definition, microservices are1:

• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around business capabilities

• Owned by a small team

Another good summary of the term microservices is written by Newman: “model [services] around busi-

ness concepts, adopt a culture of automation, hide internal implementation details, de-centralize all things,

isolate failure, and make services independently deployable and highly observable“ [10]. Microservices

match the UNIX philosophy “do one thing and do it well”2. Figure 2.2 shows a schematic microservice

architecture. A user interface calls a service which can call various other services in succession. There are

multiple data access services with multiple databases or filesystems in this architecture. Also, the services

are not separated into a front-end and a back-end. The user interface usually runs on a client (which can

be seen as a distribution), while the services usually run on a single or multiple server. There are multi-

ple opinions, which role microservices play in software architecture [2]. Microservices fit well in modern

software engineering as Agile Development and Domain Driven Design (DDD). They marvelously exploit

the advantages of containerization and cloud infrastructure. Some say, microservices are from their own

architecture style [11], some say they are SOA [10] [3], while others say they are a redefined SOA [5] [12].

“Microservices can be considered meta-processes in a Meta Operating System (OS)” [13]. There are two

types of microservices; microservices only communicating to other internal services, and microservices

communicating to internal and external services [14]. Services only communicating to external services are

defined as monolithic services. Internal services lie within the system boundary. Microservice instances are

referred to as units.

To summarise this, microservices are small stand-alone applications which create a bigger application when

they interact.

1https://microservices.io
2https://en.wikipedia.org/wiki/Unix_philosophy

5
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2 Prerequisites

Figure 2.2: A microservice application

2.1.4 Virtual Machine

A Virtual Machine (VM) is an older concept than the concept of containers [15]. Virtual Machine (VM)s

virtualise the whole Operating System so it is possible to run different systems on the same machine [16].

This enables administrators to provision machines to their needs. Virtual machines work with a hypervisor.

This hypervisor can be directly installed onto a machine or installed within a host Operating System (OS).

This hypervisor acts as a resource provisioning tool and creates interfaces for the OS to interact with the

hardware. Onto the hypervisor various virtual machines with different OS are deployed, which are com-

pletely isolated to each other. Host OS virtualisation often is realised on client machines, while baremetal

virtualisation is used on servers. Figure 2.3 shows a visualisation of the differences between the virtualisa-

tion methods. On the left side, the host virtualisation, mostly used on client machines is shown. A host OS

is installed on the computer. This host OS runs a hypervisor as a service which hosts multiple guest OS.

On the right side, the baremetal virtualisation, the hypervisor is directly installed onto the machine hosting

multiple guest OS. The baremetal virtualisation uses one layer less then the hostOS virtualisation so it is

more efficient but there is a must to use a VM to use an OS. A hypervisor can assign various hardware parts

to solely be used by distinctive VMs; e.g.: a specific Central Processing Unit (CPU) core or a Network

Interface Controller (NIC) is reserved for one specific VM and not used by another one.

6
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Figure 2.3: Host OS virtualisation vs. Baremetal virtualisation

2.1.5 Container

A container is a way of virtualising a host but it is different to a VM. A VM runs on top of a hypervisor

and this hypervisor can host multiple VMs with different OS. A container is installed on an OS. A VM

virtualises and isolates everything, a container only virtualises the user space [17] and shares the kernel

space with other containers. Containers do not require any hypervisor engine to run, but use the system calls

of the distinctive OS. This behaviour saves resources (CPU load, memory, disk space, etc.) but increases

the attack vector of a virtualised host [18]. Also, container technology limits the usage of various OS as

it uses shared system calls. The most common implementations work on a Linux system and are able to

run different distributions in container (e.g.: alpine, debian, centos, etc.) but does not allow to run a system

depending on a different kernel (e.g.: BSD, DOS, etc.). Figure 2.4 shows a container based virtualisation. A

host OS is placed directly onto a server. The host OS runs a container engine which runs various container

images with various apps. Every container shares the kernel space and only has the user space isolated.

Also the different containers on a machine share the same hardware resources. For example, this means that

every container has access to all NIC on the same machine. In comparison monolithic software runs every

application in the same user space and security lies in the correct programming of the software and correct

memory and cpu handling.
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Container target the use of multiple system distributions on the same kernel. Microservice make use of the

concept of resource sharing and isolating, and therefore often base on container images. If a microservice

system needs multiple various kernels, one VM or physical machine is needed per kernel.

Figure 2.4: Schematic container architecture

2.2 Property Evaluation of Microservices

“The essence of microservices is that they are (or compose to form) highly modular, distributed systems,

reusable through a network-exposed API. This implies that microservices inherit advantages and disadvan-

tages of both distributed systems and web services” [2]. To distinguish microservices from other software

architecture, four characteristics can be distilled:

• Distributed: Microservices build on other microservices and communicate a lot over a network

• Network: Microservices communicate over a network with other microservices

• Modular: Microservices should offer a fine-grained API that allows to use it for various applications

• Encapsulated: Microservices are isolated from other services; they only exchange information over

predefined interfaces, but do not relay on a specific infrastructure. Microservices working together

could be written in a complete different language.

Figure 2.5 shows the differences in the structure of monolithic applications and applications with microser-

vices. The user interface, the logic, and the data access is contained in the same package. While monolithic

services contain every part of the system in it, microservices are seen as multiple independent programs
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designed to work together. Every logic function and data access is split up into an own microservice (e.g. in

a container). This makes it highly scalable and also very chatty.

Figure 2.5: Monolithic vs. Microservice architecture

2.2.1 Advantages

As in every property evaluation there are advantages and disadvantages of specific objects. To start with the

good news, the advantages will be examined.

Maintainability

As every microservice is independent from another service and communicates with defined interfaces a

developer of a specific service does not need to know the insights of another service. The only needed

information is the given input and needed output of a service. This enables the developers to either quickly

patch a service or to replace it with a completely different one. This is very useful to keep an application

state-of-the-art and helps to get rid of unsupported carrier OS. These small applications lead to a faster and

more frequent software release [19].
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Heterogeneity

The same reason as the ones written in the section on maintainability gives the freedom to write each

microservice in a different programming languages. “Developers can freely choose the optimal resources

(languages, frameworks, etc.) for the implementation of each microservice” [5]. This is useful to exploit the

respective advantages of various programming languages. Also, each unit can run on another OS and with

other libraries [14].

Development time

Microservices are small services, which can be written in any language wanted and independently from

other services. That makes them easy and fast to develop, which leads to a low development time and

enables fast application of changes.

Scalability

There are two major forms of scalability in terms of computing power and performance; scale up and scale

out. The respective opposites of these terms are scale down and scale in. Michael et al. describes these

forms as followed [20]:

• Scale-up: The deployment of applications on large shared-memory servers (large SMPs).

• Scale-out: The deployment of applications on multiple small interconnected servers (clusters).

To form this in easier words, scaling up means to use a better and faster server while scaling out means

to use multiple servers. To boost performance on a monolithic application, scaling up is the only thing

possible to do when it comes to hardware, which makes this kind of application very dependent on hardware

improvement.

As a microservice application is the cooperation of multiple small services, they can get distributed to

multiple machines. Adding more machines to a cluster is defined as scaling out. Scaling out enables the use

of cheap hardware and stacking it. Also, adding and removing resources (machines) is much easier when

scaling out than scaling up, because often low or no maintenance work is necessary. Scaling out often works

without the need of a maintenance window and shutting down services. Microservices take advantage of this

architecture [21] [8] [22] as time- and resource- consuming services can easily get multiplied, there is no

need to multiply the whole application. Multiple cloudsystems support automatic scaling out/in [23]. This

enables microservices to automatically react to high load and distribute relevant services to new allocated

machines to improve performance or remove machines with low load and save costs.

10
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Availability

Microservices are designed to deploy one service multiple times in a cluster which makes microservices

highly available [22]. Well designed microservices are able to accept workload assigned to non-functional

services (service outage, corruption, etc.).

Code Comprehension

As microservices are a smaller piece of software without internal code references to other projects, the

comprehension of the code gets much better. As a result security issues are more likely to be seen3.

2.2.2 Disadvantages

A distributed system is one in which the failure of a computer you

didn’t even know existed can render your own computer unusable.

Leslie Lamport, 1987

As computer science is often a trade-off between things, most advantages are followed by disadvantages.

This section describes some of the distances of microservices.

Asset Management

Microservices result in multiple machines and/or containers. This results in a difficult asset management

due to automatic naming and a constant change in network topology [2]. Automated outscaling amplifies

this management workload. To ensure a correct working asset management and a resulting visibility of the

respective use case of the machines, their working times and the costs when working with microservices, an

automated approach is highly recommended.

Data Consistency and Replication

As microservices work distributed over the network, often running multiple instances, keeping track of

data changes is a challenge [2]. A problem when working with microservices is to keep data consistent

and ensure a correct data replication to all authorized units. This relates to the Atomicity, Consistency,

Isolation, Durability (ACID) properties. As there is no shared database, but all data is owned by the services

themselves, ACID is difficult to achieve in distributed systems [24]. Tanenbaum et al. proposes an approach

3https://docs.microsoft.com/en-us/archive/msdn-magazine/2007/november/code-reviews-

find-and-fix-vulnerabilities-before-your-app-ships
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called two-step-commit. This allows several changes to a system as an atomic operation and also allows a

rollback if a failure occurs. Eventual consistency is a weaker form of consistency. It works via updating

data in regular time frames of various services guaranteeing a maximum age of data.

Isolation

Microservices work with their local data, only pulling input and pushing results to the network. The service

itself works independently from other services and therefore does not check for system health. “The overall

system state is unknown to individual nodes” [2] [24]. This applies to all system problems, including

corrupted and hacked systems; individual units cannot determine if the system has been corrupted.

Operational Overhead

Microservices create a huge operational overhead compared to monolithic services. Ueda et al. reports an up

to 80% lower performance when comparing a microservice application to a monolithic application running

on the same hardware [25].

Also, this overhead in infrastructure leads to a lot of time investment in infrastructure before and during

development. An extra team is needed, solely to support developers in infrastructure requirements. Mi-

croservices require an automated approach and therefore service discovery and management infrastructure

components [26].

Architecture Overhead

Microservices create a need to make multiple design choices [2] and creates a huge architecture overhead.

Microservices need an extra management infrastructure to run securely and reliable functional services.

Fault Tolerance

Fault toleration is the ability to operate although a partial failure has occurred on a system [24]. A failure

producing another failure is called a cascading failure. These often lead to overall system failures making

it unproductive. To prevent this, a circuit breaker can be implemented [27] [26], which will for example

throttle down connection attempts to a broken service, or enforce connection timeouts. It is not trivial to

establish fault tolerance in distributed system.
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Documentation

Documentation of microservices itself is easy to accomplish, as only the developer working on the microser-

vice is needed to create a documentation of this service. To document the whole system, which service is

in charge of what, which data is needed on which interface and which data should get returned is a major

challenge. A sudden change in the architecture of a service can impact the whole system.

Software Testing

Software testing and fuzzing gets complicated with distributed systems [26]. To avoid downtime due to

cascading failures (see Fault tolerance) automated, regularly, broad testing of software components, to

detect potential system crashes early, is necessary. To test resilience of systems in productive environments

a new approach called chaos engineering is getting popular [28]. Chaos engineering automatically injects

faults into the system (e.g. randomly killing a unit) to encourage developers to build resilient services which

are able to self heal and resist partial failures.

Privacy constraints

“Since each microservice typically accesses different data, while composing complex applications it is hard

to monitor which data are getting accessed in the entire application workflow” [29]. As microservices are

a distributed, data intensive architectural style, it is very hard to ensure privacy guidelines. This means

microservice architecture on its own, the multiple connected services sharing data, as well as the common

implementation of microservices in cloud environments.

2.3 Trends & Challenges of Microservices

As in every technology branch, automation is the key desire to push new technologies [26]. Microservices

enable developers to automate big parts of their infrastructure and therefore push the adoption of microser-

vices. A further trend is serverless computing. Functions are written but not assigned to any machine in the

first place. It is chosen, depending on whether it is time critical or not, and the computing of the functions

is billed via computational time. This is only possible with micro and nanoservices.

Although microservices are already established, there is still no standard or best practice on how to build

microservices [26]. Therefore, there is also no guideline on how to transform a monolithic service into a

microservice. There is also no best practice on how much granularity microservices and its APIs should have

and no guideline on how to communicate with other services. This lack of standardisation leaves a lot of
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room for developers to create services and therefore to a lot of different services. Also, as a result of this lack,

many security vulnerabilities which were though to be extinct in serious services reappear, as developers

mostly have not been concerned with architectural security challenges in the past. For example, to store

data in a microservice architecture is not a trivial thing, and not standardised. Storing data in a traditional,

centralised way does not comply with microservice requirements and can lead to serious problems, including

data inconsistency. Although proposed approaches already exist4, there is no approved guideline yet.

2.4 Core Concepts of Security

To understand microservice security, some core concepts of network and IT security should be understood.

The following sections briefly explain chosen topics, which are essential for the following chapter of mi-

croservice security when it comes to data preservation and tampering protection as well as identifying,

authenticating, and authorising various users and services.

2.4.1 CIA Principle

The CIA principle5 refers to the terms confidentiality, integrity and availability of information and has

nothing to do with a three-letter-agency.

Confidentiality refers to the state that specific information is only visible to specific people. Confidentiality

can be ensured via encryption of information and share the key with entitled persons or services, or via

assigning read and write rights to these individuals. Authentication is part of confidentiality, as there is no

confidentiality without authentication.

Integrity means that information is not manipulated without anyone noticing it. Integrity ensures that files

and data remain in a state that is expected by users and is protected against unauthorized tampering through

users or services. Hashes of files can ensure the alerting of tampering of information.

Availability is the concept of providing the right data when necessary.

All three terms complete each other and should be balanced [30]. The CIA triad (Figure 2.7) represents

it. Market ready solutions for confidentiality often include integrity protection, because confidentiality as

well as integrity protection mostly is based on cryptography. These aspects are often covered identically

well. Availability needs some cryptography aspects but is mostly covered through a replication concept. As

confidentiality and integrity, and availability need two different approaches to cover the aspects, availability

4https://auth0.com/blog/introduction-to-microservices-part-4-dependencies/
5https://www.forcepoint.com/cyber-edu/cia-triad
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is often either forgotten, or too much weighted at the expense of confidentiality and integrity and therefore

often not balanced in the triad.

Figure 2.6: CIA triad - All three terms must be balanced in the architecture and security measures to guar-

antee a good working information security.

2.4.2 Identification, Authentication, Authorisation

The words identification, authentication, and authorisation are widely used in IT security6. Yet, only few

people can tell the difference between all three of them, and correctly assign these principles to projects and

software.

Identification is the claiming of an identity. This can be compared to saying a name, or typing in an email

address into a login form. Identification alone does not prove anything and cannot be used to grant privileges

and permissions. Identification is solely a intermediate step, which is used to fail-proof authentication and

increase precision of such algorithms. Authentication algorithms can work without the identification step as

well, which some of them do.

Authentication is the prove of an identity. This happens by showing an ID or typing in a password for

example. The process of authentication can be done via three factors: something you know, something you

have, something you are. Knowing can be handled through a password, having via a security token (USB

drive, smart-card, etc.), or via a biometric scan (fingerprint, retina scan, etc.). Multifactor authentication

works when combining at least two of the above described ways (e.g.: Smart card with PIN, Smart card with

fingerprint). Authentication is necessary to ensure confidentiality. Authentication works with and without

6https://www.kaspersky.com/blog/identification-authentication-authorization-

difference/37143/
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identification. When someone attempts to authenticate without identifying, the proof of authentication is

checked against the total of all users or services which results in a 1 to N check (O(N)). This increases

computing time and error rate, which decreases security. Identifying before authenticating results in a 1 to

1 check (O(1)). This decreases computing time and error rate, which results in increased security.

Authorisation is the process of assigning privileges to entities (e.g.: read permissions on specific files,

access permissions of various programs). Several approaches to assign permissions exist, including Access

Control List (ACL), Role Based Access Control (RBAC), Attribute Based Access Control (ABAC). ACL

assigns permissions based on identities. In the RBAC approach, permissions are assigned to roles, which

are assigned to identities. ABAC is an extension of RBAC as it assign permissions to attributes, which are

assigned to roles and identities. The ACL approach is the easiest approach, but also quite coarse, while

ABAC is the most complex approach but also the most fine grained.

2.4.3 Public Key Cryptography

Public key cryptography, also asymmetric cryptography, works with two keys, a private and a public

key [31]. The names of the keys already describe where they are stored. When encrypting or signing

something, this can be done with both keys. Always the opposite key is needed to decrypt or check the

signature. Therefore when encrypting something with the public key, only the private key can decrypt it;

when signing something with the private key, only the public key can check it. Encrypting some thing with

the public key ensures confidentiality, as only the bearer of the private key can decrypt it. Signing with

the private key ensures the authenticity of data, as everybody can check that this has been signed with one

specific private key.

Figure 2.7: Public Key Cryptography - Bob uses Alice public key to encrypt a message, which can only be

decrypted by Alice with her private key.
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Public key cryptography has been the key concept of a modern secure IT and web. Symmetric cryptogra-

phy is much faster than asymmetric cryptography, but asymmetric cryptography solves the problem of key

exchange [26]. Security of the transport layer of the Open Systems Interconnection (OSI) system is entirely

based on asymmetric cryptography in Transport Layer Security (TLS), as well as it is with already depre-

cated, but unfortunately still in use, Secure Socket Layer (SSL). TLS provides confidentiality and integrity

protection. Previous TLS versions allowed a variety of insecure and obsolete crypto modes which were

removed in the actual standard TLS 1.3 [32]. Therefore an adoption of the new standard is recommended.

Asymmetric Cryptography works best with an infrastructure, a Public Key Infrastructure (PKI). A PKI

issues digital certificates, which bears both keys, or just the public one. They are used to execute all asym-

metric cryptographic operations. The PKI is used to validate certain certificates, as they establish a trust

chain [33] [34]. The validity of a cryptographic operation is reviewed by its technical correctness and if a

trusted, valid certificate was used. A core problem of this infrastructure is the fast and correct distribution

of the Certificate Revocation List (CRL). As running a productive PKI is non trivial, short comings of this

approach need to be understood [35].

2.4.4 Authentication and Authorisation in Distributed Systems

R2D2, you know better than to trust a strange computer.

C3PO, 1980

To ensure authenticity and authorisation in modern web and IT, delegated approaches have been developed.

These approaches have been developed to increase user convenience, as it enables them to use a single ac-

count for multiple services. Prominent examples are OpenID, OAuth, and OpenID Connect (OIDC). As

OpenID itself has been deprecated, it still plays an key role in the OIDC protocol7. These protocols also in-

troduce interesting applications in a distributed microservice approach for inter-service communication [26].

OAuth 1.0

OAuth is an authorization protocol, not intended to use as an authentication protocol [36]. Therefore OAuth

assumes that requests have been already authenticated.

OAuth 1.0 works with two credentials within each client request: for the resource owner and for the client

itself [37]. Before accessing a resource, a client needs to request for permission by the resource owner via

the authorisation server [26]. If successful, the server issues an access token to the requester. This token

7https://openid.net/developers/libraries/obsolete/
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represents the approval of the resource owner and enables the client to request resources from a Service

Provider (SP). The client credentials enable the participating parties to authenticate a client and ensures

message integrity.

OAuth 2.0

OAuth 2.0 only utilises one credential, the resource owners [38], there is no client authentication any-

more. OAuth 2.0 is simpler than OAuth 1.0, but depends entirely on TLS to guarantee authenticity and

integrity [26]. Both versions, 1.0 and 2.0, depend on TLS to guarantee confidentiality. Also, as there is no

client authentication, OAuth 2.0 now less than ever should be used as an authentication protocol. Also, as it

introduced more optional arguments, it led to interoperability issues between multiple providers. OAuth 2.0

introduces four use cases, but only two are popularly used, whereas one is often used falsely: implicit flow

and authorisation code flow.

The Implicit Flow is intended for third parties, that are not able to handle confidential data securely [26].

Figure 2.8 visualises the implicit flow. The user sends his credentials and the ones of the requesting client to

an authorisation server and receives an access token. Further it sends the access token to the resource server

and receives the requested resources [38]. The implicit flow is much easier than the authorisation code flow,

but not as secure as the latter, as it exposes internal access token to untrusted parties, as for example the user.

Figure 2.8: Implicit flow of the OAuth protocol [38]

The Authorisation Code Flow targets trusted clients. The authorisation code flow is more secure, as it never

exposes an access token to any non-trusted client or user. The only party getting an access token is a web
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application (e.g.: API gateway) running on a trusted web server. Figure 2.9 visualises this flow. The user

sends his authorisation request with the authorisation request of the used client to the authorisation server.

The server returns the authorisation code for the client to the user. The user sends this code to the client.

The client uses this code to request an access token for the user and receives it. The user sends a request to

the client, the client combines it with the access token and sends it to the resource server, which return the

resource back to the client and then to the user. The user never gets any access token.

Figure 2.9: Authorisation code flow of the OAuth protocol [38].

OpenID Connect

OpenID Connect (OIDC) is a authentication and authorisation protocol, combining OpenID and OAuth

2.08. It is well used as a Single Sign On (SSO) protocol. OIDC is widely used as so called “social lo-

gin” (“Login with Facebook”, “Login with Twitter”, etc.). OIDC includes Identity Provider (IdP), which

are working as authentication and authorisation server, and SP also called Relying Party (RP) to provide

requested resources. The protocol offers some extended features to improve security [39], which might

decrease privacy:

• An RP can request further information about a requesting user, such as email address, phone number,

login details, etc. from the IdP or included in the access token.

• Tokens of the IdP and the RP must be signed and encrypted.

• RP must authenticate to IdP via digital signature, or Hash-based Message Authentication Code (HMAC)

and shared secret.

The request flow is very much similar to OAuth 2.0.

8https://openid.net/connect/
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3 Related Work

After clarifying the basics of this topic, an introduction to the state of the art is necessary. This chapter

shows related work and what has already been done.

Yarygina et al. created a first survey about microservice security [2]. They gave a broad overview of se-

curity thoughts and their implementations. Their focus lies on authentication and authorization of users as

well as services. They outlined a model which follows the OSI model and summarised some core concepts.

Yarygina et al. also created a microservice based banking system as a proof of concept and tested perfor-

mance impacts of various common security implementations in microservices. Their experiments included

the usage of a self-hosted PKI to enable Mutual Transport Layer Security (MTLS) connections and a reverse

Security Token Service (STS) to issue security tokens.

Dragoni et al. gave a historical overview of microservice evolution and gave an prospect to what microser-

vices will look like in the future. They addressed key aspects in the development that have been solved and

will be solved through microservices [5].

Almeida et al. did a basic survey about microservice security and privacy in a cloud context in 2017 [13].

The paper gives an overview about elements to consider for developing microservices and describes the

architecture of those.

Otterstad et al. evaluated microservice security approaches on low-level attacks [14]. They suggest a wide

heterogeneity of used systems in every way. They suggest the usage of various OS, and various exposure

levels and corresponding access profiles.

Dragoni et al. gave a broad overview about microservice scalability and why this is a key property to soft-

ware development [22].

Tanenbaum et al. wrote a fundamental guide of distributed systems, describing the principles and paradigms,

which can be applied on microservices as well [24].

Yarygina also did a comprehensive doctoral thesis about microservice security [26]. She concluded that

there are differences in a SOA and microservice architecure, as well as automation is the key feature that

needs to be considered in every step in microservice development.
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Vistbakka et al. analysed microservice architecture in terms of privacy and made a first definition of privacy-

preserving microservices [29] [40].

Fetzer introduces an architecture for critical applications in a microservice approach [41]. He, as well as

some others, proposes to take advantage of hardware related security features like Software Guard Exten-

sions (SGX) to protect microservices.

Casalicchio et al. created a comprehensive survey about Continuous Integration (CI) security and usage [42].

In combination with Ullah et al.’s work about Continuous Deployment (CD) security [43], it is a great

overview about DevOps protection.

Pahl et al. created a communication monitor to detect anomalies in the communication of microservices [44].

They created a service between every communication, basically working as a Man-in-the-middle (MITM)

getting trained and then blocking all non-expected communication.

Sun et al. introduce a new API flow for the network hypervisor in cloud based microservice systems to build

a network monitoring and policy enforcement [45].

Hahn et al. surveyed the security of common service mesh implementation and tools [46]. They basically

concluded, that service mesh tools are placed in microservice environments and behave like microservices,

therefore basic microservice security needs to be applied to service meshes as well.
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Monolithic services focused security on single points [47]. “Monolithic services have a clear boundary and

encapsulate their communication” [13], therefore security vulnerabilities are obscured to the inner layers

of the system [48] [49]. Microservices rise different security challenges to solve than traditional services,

e.g.: communicating sensitive data over the network, whereas monolithic services used the Random Access

Memory (RAM) and security approaches of the RAM for it. Thus microservices depend on multiple units

communicating with each other, trust establishment between them is an essential challenge to be solved.

As microservices are a fast growing and fast shrinking application approach, infrastructure and all services

monitoring and securing infrastructure need to be highly automated. Also, the fast change in software

development from monolithic services to microservices and their Web-API behaviour leads to published

code, that was never meant to be exposed [2].

4.1 Layers of Security Challenges

To examine the security challenges of microservices Yarygina et al. propose to address them based by

categories: hardware, virtualisation, cloud, communication, service, and orchestration. These categories

will be explained and their challenges investigated. These categories can be viewed like the OSI layers.

Vulnerabilities threatening one specific layer will likely compromise all other layers below as well as seen

in Table 4.1 [2]. The principle of system security layers will be introduced. When having control of one

layer, one has also control over all layers below the controlled layer and absolutely no control over the

layers above; e.g.: One has control over the communication layer, therefore one has also full control over

the service and orchestration layer, but absolutely no control over the cloud, virtualisation and hardware

layer.
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4.1.1 Hardware

All software security depends on strong, safe hardware. Bugs like Meltdown [50], Spectre [51] and Zom-

bieLoad [52] enable attackers to create powerful side-channel attacks. Also weak Random Number Gen-

erator (RNG), tampered Trusted Platform Module (TPM) and poorly designed CPU [53] compromise the

security of the whole system. Weak RNG lead to weak random numbers. These random numbers are

essential when using cryptography (e.g.: creating keys) and therefore rely on a good entropy. TPM are

cryptographic chips, especially designed to create and save cryptographic keys and operate with them on

hardware level (e.g.: full disk encryption). Backdoors in these chips or in other parts1 of the hardware placed

by manufacturers or intelligence services can be introduced at the point of manufacture2 as well as later on3.

There are only a few things to mitigate these threats[2]:

• Designing own hardware

• Diversification of hardware

• Use of Hardware Security Module (HSM)

Designing own hardware, especially security chips is an expensive and non-trivial thing. This only pays off

for big companies in need of a lot of hardware (e.g.: cloud provider). A diversification of hardware [54],

especially varying hardware producers, is a powerful method to mitigate specific hardware vulnerabilities.

This does not help against fundamental design issues as in Meltdown or Spectre, but helps against specific

backdoors from manufacturers. HSM, e.g. smart cards or security tokens, are a profound way to store

cryptographic keys outside of the usual system.

4.1.2 Virtualisation

There are many ways to virtualise services. From sharing resources and isolating services (VM, container),

separating processes (OS memory management) to testing applications and files (sandboxing) many reasons

exist to justify virtualisation. For all causes virtualisation is fundamentally done by isolating software pro-

cesses and sharing hardware resources. Threats against virtualisation are summarized to attempt to break

virtualisation, therefore to get access to isolated services [55], which is called in general “Virtual machine

escape”. “Attacks include: Sandbox escape, hypervisor compromise, and shared memory attacks; also, use

of malicious and/or vulnerable images is another serious concern” [2].

1https://www.slideshare.net/endrazine/defcon-hardware-backdooring-is-practical
2https://www.extremetech.com/computing/133773-rakshasa-the-hardware-backdoor-that-

china-could-embed-in-every-computer
3https://www.infoworld.com/article/2608141/snowden--the-nsa-planted-backdoors-in-

cisco-products.html
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To prevent and mitigate these imperilments, Yarygina et al. propose to prefer stronger isolation virtualisa-

tion, to not share library and hardware caches, to verify the origin and integrity of images and to obey the

principle of least privilege [2]. Pearce et al. further recommends to regularly patch and update the hypervi-

sor and execute integrity checks [56]. Virtualisation can also be a threat when not using any virtualisation.

Malware can place a hypervisor as another layer between any layer of code recording and intercepting any

request. One of the first proof of concepts was blue pill45. Also a reverse sandbox can help identify threats

and mitigate them [2].

4.1.3 Cloud

Cloud computing opens a new chapter of security hopes and nightmares. Cloud services serve as a remote

infrastructure which can be bought at various service levels. This flexibility is highly attractive for admin-

istrators and accountants, at least at the first glance. Each level guarantees different services and enables

various access points to administrators and attackers. Infrastructure as a Service (IaaS) provides access to

the machine layer, meaning an administrator can install and configure his (virtual) machine as wanted. Plat-

form as a Service (PaaS) enables an administrator to use a platform (e.g.: a webserver) and configure this

webserver as wanted. Software as a Service (SaaS) provides access to software (e.g.: Office 365) where

no client software has to be installed, as everything runs in the cloud. Cloud security has to be seen as a

completly new field in information security as this is a highly complex topic [57]. As for example, when

correctly configured, cloud services can guarantee to always be up-to-date (PaaS, SaaS), these thoughts can

lead to misconfiguration when buying other levels of service (IaaS)6.

To address cloud security issues, one can follow the CIA principle:

• In terms of Confidentiality, the cloud solves nothing out of the box. When using a cloud to store and

process data all of the already known best-practices and pitfalls have to be considered. Additionally

the cloud creates another threat: the cloud provider. A cloud provider has unlimited access to every

system in its infrastructure. This includes all data. When applying confidentiality policies traditional

actions like access management have to be combined with strong encryption methods, where the keys

are not stored inside the cloud. Also, the communication from the workplace to the data/cloud should

be regarded. A Virtual Private Network (VPN) can help to increase chances to ensure confidentiality

4http://web.cecs.pdx.edu/~wuchang/courses/cs492/BluePill.pdf
5http://conference.hackinthebox.nl/hitbsecconf2006kl/materials/DAY%202%20-%20Joanna%

20Rutkowska%20-%20Subverting%20Vista%20Kernel.pdf
6https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-update-azure-

service
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and integrity7.

• “Integrity provides assurances that data has not changed”8. With a cloud provider having access to

the infrastructure and data this is an attack vector which strongly depends on trust, that this one is not

being violated. Also a point to be considered is the distributed data set, which is not under control

of a local administrator. Systems must be resistant enough to survive sudden update and transfer

procedures and must ensure that data is not getting corrupted. As the cloud providers update and

transfer data at their decision, there is no way to time infrastructure changes, system changes and

maintenance windows [58].

• Availability is the last key property in the CIA triangle. All cloud services advertise their high avail-

ability and backup solutions in case something is being attacked, compromised or crashed. Another

point of availability is the fact, that companies, when using the cloud, do not have the sovereignty

of their data anymore, and in fact lost the availability. When it comes to gaining back data and re-

trieving them from the cloud, they rely on agreements with the cloud provider and politics of the

involved countries. This is highly relevant for critical infrastructure and for companies with a high-

value-product. A quote of Frank Rieger regarding the cloud is: “Your data is somewhere else, and

you do not know where”9.

Another factor is the rising privacy issue which will not be discussed in this paper. Although most work

only focuses on cloud security, Abdullah et al. created an access control concept which aims to protect the

privacy of the user while preserving the CIA-triad on the data [59].

4.1.4 Communication

Due to their architecture, microservices need to communicate a lot with other services. This communication

mostly happens over the network stack [5], which enables a great portability, therefore microservices are

not bound to any cloud or hardware provider [42]. As it is common in the DevOps-era and brings a lot of

advantages but also disadvantages, microservices use API to communicate with other microservices [27],

including Representational State Transfer (REST) APIs and Simple Object Access Protocol (SOAP) [60].

Therefore the next layer of attack vectors are based on the communication of microservices [2]. “The mi-

croservices must assume that any input encountered is hostile” [14]. Microservices are communication over

an insecure network to users and other microservices and must be aware that users may input dangerous

7https://clearchoiceinc.com/ensuring-confidentiality-in-the-cloud/
8https://cybersecurityglossary.com/integrity/
9https://www.faz.net/aktuell/feuilleton/debatten/ueberwachung/snowdens-enthuellungen-

sind-ein-erdbeben-12685829.html?printPagedArticle=true
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input and other microservices may be compromised. Attack threats to this layer are quite the same as the

typical network problems like MITM, Denial of Service (DoS), and Distributed Denial of Service (DDoS)

attacks, including eavesdropping, spoofing, and session hijacking extended with protocol attacks on TLS

encryption; e.g. Heartbleed [61] and POODLE [62]. A security threat could be the use of clear-text end-to-

end traffic between services.

The approach to communicate over network interfaces causes new attack vectors to arise [13]. This is

one of the major challenges in the microservice approach [63] [47]. To mitigate threats the global usage of

standardized cryptotools like an up-to-date TLS implementation is recommended; also when only communi-

cation in the same cloud environment10, company network, or on localhost. Also, a good security perimeter

concept should be in place. A quick win will be the usage of different credentials across the services [2], as

well as the usage of microsegmentation as later described.

4.1.5 Service

Microservices suffer from the same kind of application vulnerability as other applications. Fast feature

deployment leads to user happiness and security vulnerabilities. OWASP releases the ten most common

application vulnerability categories yearly11. Despite the fact that OWASP stands for Open Web Applica-

tion Security Project, this rating represents all computer applications. Some of them are represented most

years: injections (SQL, OS, LDAP, etc.), broken authentication and access control, data exposure, Cross-

Site-Scripting (XSS), broken deserialisation, insufficient logging, and usage of unpatched and/or outdated

libraries.

Static and dynamic code analysis including a manual code review helps in getting rid of most security is-

sues [2]. Also, the correct usage of input validation, error handling and a good documentation of API helps.

Additionally to the full disk encryption at the cloud layer, data encryption in databases or in files helps to

slow down and repel attackers. Orchestration can be useful to visualise dependencies and keeping them up

to date1213.

10https://www.darkreading.com/cloud/82--of-databases-left-unencrypted-in-public-

cloud/d/d-id/1328966
11https://owasp.org/www-project-top-ten/
12https://medium.com/better-practices/conquering-the-microservices-dependency-hell-at-

postman-with-postman-part-2-7c825d576947
13https://simplabs.com/blog/2019/04/24/dependency-updates-for-gitlab/
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4.1.6 Orchestration

Orchestration is the management of the various service units and nodes14. As microservice units need to

spawn and disappear automatically, this needs to be orchestrated. Due to a continuous start and stop process,

the infrastructure and network changes as well. Attackers could use this to discover services [27], or create

central points to reach all services in the network [64]. Common attacks are the registration of a malicious

node and the redirection of traffic [2]. Orchestration is a special case in this layer principle. As every

orchestration framework obviously depends on the service it is hosted in, the orchestration also influences

the services. It is not entitled to create them, but could introduce malicious services to the system and

destroy critical ones. [42].

An effective protection of the orchestration platform is necessary but not well researched. A best practice so

far is to use common protection methods like a strong password for this services only, encrypted connections

and encrypted configuration files.

4.2 Types of Security Measures

Security measures are divided into three types: preventive, detective and corrective. There is a huge differ-

ence between them, as when applied preventive measurements correctly, there is theoretically no need for

detective and corrective measurements. But to repair an already compromised system, one must detect the

maliciousness and correct it. Without detection, correction would be useless and vice-versa.

4.2.1 Preventive Measures

When implementing preventive measures, this is called security by design [26]. Some basic approaches are:

• Minimize attack surface area - Limit number of interfaces, APIs, proposed services to an absolute

minimum

• Security by default - As configuration settings are mostly not changed, the default settings should be

the most secure ones.

• Defense in depth - No component should be trusted and everything should be validated (see subsec-

tion 4.3.5).

• Least privilege - Every entity is privileged with required rights only. A dedicated user with a fine

grained rights management for a webserver is more secure, than just executing it with the root user.

14https://www.forbes.com/sites/forbestechcouncil/2019/10/28/orchestration-of-

microservices-monoliths-people-and-robots/
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Layer Threat examples Mitigation

Hardware

Hardware bugs affect the whole system

and cannot be patched without changing

hardware. Hardware bugs undermine ev-

ery software security solution. Hardware

bugs and backdoors can be introduced

at manufacturing as well as at shipping

time.

Designing and manufacturing of own

hardware; diversification of hardware.

Virtualisation

Sandbox escape, hypervisor compromise

and shared memory attacks affect the se-

curity of a system.

Strong isolation deployment, no shared

memory and hardware cache, verifying of

images before deployment; principle of

least privilege.

Cloud

Unlimited control of cloud provider to

your services; Shared environment with

other customers

Contracts and certificates with the

provider and trust, as there is often

no way to control if a provider acts in

accordance with the contract.

Communication

Attacks on network stack and encryption

methods; sniffing, spoofing, hijacking,

DoS, MITM, Heartblead & POODLE.

Use updated standard libraries, follow se-

curity guidelines and best practices, deac-

tivate outdated protocols, segmentation.

Service

OWASP Top Ten; typical web vulnerabil-

ities including injection of all kinds, inse-

cure authentication, insecure deserialisa-

tion, and misconfiguration

Code analysis and review, input valida-

tion, error handling, good documentation

especially for APIs.

Orchestration

Automation of services and coordination

attacks, compromising service discovery,

inserting malicious nodes.

no words of wisdom yet

Table 4.1: Principle of security layers - A summary of the security layers, their threats and mitigations of

Yarygina et al. If one layer is compromised, the attacker has control over all layers below as

well [2].
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Most of the proposed concepts in this work represent preventive measures. As preventive measures prevent

damage, most to the attention on security measures should lie on preventive ones.

4.2.2 Detective Measures

Detective measures are needed when an incident has already occurred. Unfortunately, detection is needed

to notice an intrusion, but without detection there is no correction. Classic detection products are Intrusion

Detection System (IDS) and Intrusion Prevention System (IPS) systems. IDS only detect incidents and

IPS also try to prevent them. Another way to detect incidents is the usage of honeypots [65]. They detect

malicious access to systems and gain knowledge about these attacks and slow down an attacker. The time

between detection and correction is important. As long as an attacker persists on a system, the more damage

happens to it. Implementing and using a Security Information and Event Management (SIEM) or renting a

Cyber Defence Center (CDC) is an effective way to detect any anomalies and attacks on a system.

4.2.3 Corrective Measures

Corrective measures try to rollback malicious activities and prevent them from happening again. An exam-

ple could be an updated version of a software [26] or the killing of a compromised unit and the redeployment

of a refactored one. Preventing malicious activities from happening again usually means improving security

measures, as seen in the example before. Some players however, especially intelligence agencies, are ac-

tively attacking attackers in the hope of destroying their infrastructure and therefore preventing attacks from

happening again15. This nearly undocumented behaviour could lead to a series of collateral damages in crit-

ical infrastructure and impacting non-participants, and this raises serious ethical questions. It is therefore

generally discouraged from doing so as nearly no consequences of executing revenge-attacks in cyberspace

are researched yet.

4.3 Security Thoughts and Recommendations on Microservices

As the different layers of security threats have been discussed, some general thoughts and recommendations

on microservice security will be displayed. These approaches can be implemented in multiple ways.

15https://edwardsnowden.com/2015/01/16/cybercop/
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4.3.1 Containerisation

Containerisation is one of the key features of microservices. Most of the microservices get containerised.

It has the great advantage, that services may get packaged in an image [66]. This allows the services to get

stopped and started quickly [67]. When a system crashes, its portability allows it to recover quickly, and

therefore ensures a high availability [13]. Also the fragmentation of the system in smaller pieces (microser-

vices in container) allows greater availability of the whole system. If one service fails, it does not affect the

whole system. When the services are running on different machines or even different locations of different

providers, the unavailability of one provider, machine, etc. only affect one part of the system, which can get

recovered quickly on another location. Such code portability minimizes downtime [68].

Container although introduces a lot of new security issues, which need to be addressed. The main challenges

are summarised to network security, isolation, and data and image encryption [42]. The authors mainly ad-

dress Docker security, which lacks at image distribution and container control levels. Syed et al. claim

to have created an ecosystem for containers to provide compliance, privacy, safety, reliability, and gover-

nance [69]. The following subsections will explain the major problems in container security. An overview

of the challenges and proposed solutions is given in Table 4.2 based on Casalicchio et al. [42].

Isolation

Container isolation is based on cgroups and namespaces in the Unix systems [42]. “Isolation in accessing

the resources is fairly guaranteed by the Linux namespace and cgroup, but there is a flaw in how containers

share the same network bridge” [42]. In general, Linux OS settings protect the host, but do not protect

any container from any other container. Jian et al. proposes to inspect the status of namespaces and look for

anomalous processes to defend against container escapes [70]. Luo et al. conclude that the usage of SELinux

and AppArmor is essential for container security. Secure alternatives to Docker are Joinet Triton [72],

Charliecloud [73], and Socker [74]. Bastille16 is an alternative for FreeBSD. SCONE [75], a C-library to

encrypt and decrypt files on a file descriptor basis, can also be used to secure containers. SecureStreams [76]

is used to deploy and process secure streams at scale [42]; DATS increases isolation at application layer

level [77]. In general, Casalicchio et al. recommends the usage of SGX enclaves, although they mention

that this limits the architecture to the Intel architecture and increases implementation complexity [42].

16https://bastillebsd.org/
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Data encryption

The encryption of image layers is a challenge to protect container data from compromise or a malicious

user [42]. To prevent data exfiltration, the usage of Intel SGX enclaves and SCONE17 is encouraged. Intel

SGX are special memory regions which are encrypted by the CPU with special read or write permissions.

Many cloud providers provide access to those enclaves. In some implementations it is also possible to define

the layers of the filesystem in a granular way which contain sensible data, which requires encryption [78].

Network encryption

Containers enable a great portability, therefore they are not bound to any cloud or hardware provider [42].

Again, the most promising security protection approaches are based on the usage of SGX enclaves. SynAP-

TIC [79] provides secure and persistent communication based on public keys and the Host Identification

Protocol (HIP). The HIP18 tries to enable a seamless change of devices by a user while access a resource. It

does not require any architectural changes and support the usage of Software Defined Network (SDN).

Isolation Data encryption Network security

SGX-based isolation SGX-based volume encryption
SGX-based network channel en-

cryption

Kernel based isolation SGX-based filesystem encryption Host Identification Protocol

OS hardening
Image layer encryption at rest and

on-the-fly

Channel leakage mitigation tech-

niques

Application level isolation

Escape attack detection

Table 4.2: The major challenges of container security and their mitigation proposes [42].

4.3.2 Network isolation

Microservices that run on a shared computing node, naturally also share the network ports of this node. As

this shared resource of essential infrastructure in microservice means represents a critical attack surface,

some countermeasure must be made. Network traffic encryption as described above is a very efficient way

to protect against eavesdropping. Another way is to isolate different networks and network ports from each

17https://scontain.com
18https://tools.ietf.org/html/rfc5201
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other. This could be done via Virtual Local Area Network (VLAN) in on premise infrastructures or any

tool provided by the cloud provider (which will probably depend on VLAN). VLAN is a widely used and

trusted mechanism to isolate layer-2 networks [80]. The usage of VLAN and resulting virtual network ports

limit containers to only access networks they belong to and makes it possible to assign one network port

per container. Isolating networks and port must fit into the automation approach to work and be accepted.

SDN are a newer approach which are a flexible and fast solution in defining networks and introducing and

isolating hosts [81]. They introduce the configuration of networks to applications via an API. This allows

application and orchestration software to react just-in-time to adapting network requirements and is essential

when constantly deploying, killing and transferring container on different computing nodes. SDN works via

implementing a middle layer API between applications and the networking layer. As seen in Figure 4.1, the

applications address the SDN API which addresses manageable switches and virtual switches and creates

the desired network environment. Using an orchestration system, which automatically isolates and connects

containers based on their description and/or metadata would reduce effort and mistakes of the DevOps

administrators. Do not mistake firewalling for network isolation! Firewalling addresses OSI layer from 3

up to 7 [82], network isolation affects OSI layer 2 [80]. Kubernetes for example supports firewalling out

of the box, but no network isolation19. Libra is a cluster management framework which provides network

isolation for security and maximise shared network performance [83].

Figure 4.1: Application address the SDN layer for network requirements, which the SDN controller provides

via the underlying switches.

19https://kubernetes.io/docs/concepts/services-networking/network-policies/
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4.3.3 Microsegmentation

Microsegmentation differs to SDN and VLAN [84]. While subnets and VLANs need a perimeter to filter

requests and connect the nets, microsegmented services can interact and filter request in the same network.

Microsegmentation allows to dynamically identify devices and assess its security. It builds device invento-

ries and assigns devices into functional security groups.

Microsegmentation belongs to the zero trust approach20. Microsegmentation works via visibility, granular

security, and dynamic adaption. It creates different security policies for each namespace. A namespace

could be viewed as a dynamic Demilitarised Zone (DMZ). Microsegmentation enforces intra-network secu-

rity policies which traditional firewalls normally do not control. As seen in Figure 4.2, the firewall is at the

edge of the network and only is addressed when working as a gateway to connect different networks. Mi-

crosegmentation implementations mostly address the hypervisor, as it has contact to every network packet

in a microservice environment. It enables to automate the complete network infrastructure via software.

Microsegmentation could be used to isolate microservices containing sensitive data to other ones and there-

fore meet compliance regulations. Microsegmentation adds a benefit to systems as they result in a smaller

attack surface and are able to contain successful attacks in a smaller area. Unfortunately, microsegmentation

makes networks and applications more complex which leads to a higher risk of misconfiguration.

Figure 4.2: Server applications in a network with a firewall at the edge.

20https://www.paloaltonetworks.com/cyberpedia/what-is-microsegmentation

34

https://www.paloaltonetworks.com/cyberpedia/what-is-microsegmentation


4 Security Challenges regarding Microservices

4.3.4 DevOps Protection

DevOps is the combination of development and IT-operations. These teams are part of an agile development.

As microservices support the agile development the infrastructure and development cycle should also be

secured. Each developer submits code to a Version Control System (VCS) where different versions of

various developers get merged into a release. Modern VCS support the use of a CI and a CD which allow

automated tests, image and package building and deployment to production environments. Both, inside

the code and inside the CI/CD configuration may contain credentials placed by careless developers. Once

inserted, it is very difficult21 and sometimes not possible to delete the credentials inside a VCS. Most public

VCS systems allow a direct connection to a cloud provider for direct deployment which makes them very

convenient. According to the principle of security layers of section 4.1, neither the infrastructure of the

cloud nor the code itself in the public VCS providers is under control of the organisation. Furthermore,

when management decides to go open-source all versioned credentials go public as well, which leads to

serious security issues22. Open-Source is increasing in popularity [13].

Continuous Integration is intended to automate compilation, building and testing of software [85]. CI also

automates vulnerability checks and therefore increases software quality and security. Tampering with the

CI compromises all code handled with this module and therefore a security concept for the CI is necessary.

A big risk lies in the building and testing itself. As the CI needs to execute every command of the developer

of all checked-in versions it is exposed to highly unstable, erroneous, and vulnerable code which appears

during the development process [86]. This erroneous code needs to be executed in a sandboxed environment

to limit escapes and resource consumption. Most CI provide access to the projects via a WebGUI. As this

applies for any website, the WebGUI needs to withstand any website attack23, which, when successful,

provides attackers access to any developed code. Furthermore, attacks can address any step in the build

process and always affects the CI as well as the resulting code, which is intended to become productive

code [86]:

• VCS checkout: During this phase, the CI downloads the latest version of the code including external

dependencies to build it. Malicious external content, as well as obfuscated referrals (e.g.: links in the

code to internal resources) may compromise the process and resulting code.

• Build preparations: When preparing the building environment, the CI needs to configure it differently

for every code project. This includes a varying set of commands which cannot be limited to a preset

21https://git-scm.com/docs/git-filter-branch
22https://www.theregister.com/2020/12/16/solarwinds_github_password/
23https://owasp.org/www-project-top-ten/
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a closed set of commands. Executing the preparation with a least privilege principle, as well as

automated analysis of the build steps are a good countermeasure against this threat.

• Builder runs: While building, the CI compiles and links libraries to the code. Also, all test artifacts are

built. Attackers could insert malicious source code which will be executed during tests. These Remote

Code Execution (RCE) include any kind of attack. A sophisticated attack is Thompson’s trusting trust

attack [87]: A compromised build server inserts malicious code into the source code and builds it.

Trusted source code is inserted in the compromised build server, therefore compromised executables

will be the output. These attacks are difficult to detect. Again, the usage of a least privilege principle is

recommended to countermeasure attacks. Anti-virus systems can help, but are useless when zero-day

attacks are executed.

• Notifications: Notification includes all build servers sending output generated by the build server to

the master server. If an attacker compromised a build server, it can modify these notifications, sending

corrupt logging messages to the master (similar to modifying any logging messages of compromised

server).

As seen, isolating building processes (e.g.: sandbox or VM), analysing source code and configuration data,

as well as assigning least needed privileges to building and testing processes are an effective countermeasure

against attacks of the CI. More concepts should be developed individually in each environment.

Similar to CI, also the Continuous Deployment is an essential part of DevOps. CD allows to automate

continuous and reliable deployment of already build software [43]. CI is only a part of the CD, as it includes

the developer sending code to a code repository, the CI retrieving code from the repository and building and

testing, and automated deployment to a productive server. This pipeline from the developer to the productive

server needs to be secured, authenticated and authorised. Poorly secured access to various parts in the

pipeline leads to code injection and compromised productive server. The usage of provided authentication

schemes of used tools is highly recommended, as well as the usage of common security practices: public key

authentication, encryption of communication channels, multiple perimeter concept (see subsection 4.3.5).

4.3.5 Security Perimeter Shift

Traditional security perimeters are placed along the system boundaries. All services inside the system are

trusted. An attacker had to pass a strong security perimeter once, but once inside, an attacker could hop

from service to service. Nowadays, this is considered insecure and insufficient [2]. Microservices need to

communicate a lot with other, also previously unknown units. As these unknown, freshly spawned units

can be malicious (see: subsection 4.1.6), “trust no one” is the name of the game. Therefore the concept of
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zerotrust24 [88] should be implemented. Figure 4.3 illustrates such a defense in depth behaviour. Traditional

security approach (1.) follow the principle “System boundary = Security perimeter”. The modern approach

(2.) shifts the security perimeter directly to the services. All services protect themselves and do not trust

any other service until authenticated. This is called zerotrust. The proposed approach (3.) follow a multiple

perimeter concept. This includes zerotrust and at least one traditional perimeter at the system boundary.

When implementing zerotrust, end-to-end encryption should be used when communicating. Although this

is a modern approach to security, it cannot be fully trusted, as manufacturers tend to program software to

bypass local firewalls25 which can also be used by malware. Nevertheless, zerotrust is not only firewalling

but authenticating and authorizing which can also be programmed native. The proposed approach of Yary-

gina et al., zerotrust, is therefore extended by a mixture of both approaches, traditional and zerotrust as

part of a second or multiple parameter concept. This includes at least one traditional security perimeter at

system boundary combined with zerotrust. The various perimeters do not correspond to each other and act

completely independent. If one perimeter gets corrupted, the other one is not. Additionally, there can be

multiple perimeters around subsystems. The more farther away the system is from the perimeter, it is more

likely to block unfocused attacks and noise. The nearer a perimeter control is to the service, the more likely

it is to detect focused attacks, as well as rogue services. This enhances visibility of security assets.

4.3.6 API Protection

The shift of security perimeters does not mean equalising security within services. As also been applied in

monolithic services, APIs exposed to the internet should be reduced to their absolute minimum and reduce

the theoretically available control flow for attackers [14]. An API is an interface providing control of a

service to another service. The more services are placed near the system boundary, the more strict hardening

these services need. Also, an API exposed to the public needs an additional layer of security, as compared to

APIs only exposed to the internal network. A system boundary perimeter could help reduce or remove noise

on external interfaces. All misbehaving services inside the system boundary could be seen as compromised.

This can either be done in a granular way or via access profiles, as seen in Figure 4.4. Services offering

valuable and sensitive information and access should be placed more inside a system, guarded and only able

to be accessed by more hardened services. Also more resources should be spent securing sensitive services,

than on other services.

24https://msandbu.org/demystify-zero-trust-design-never-trust-always-verify/
25https://arstechnica.com/gadgets/2020/11/apple-lets-some-big-sur-network-traffic-

bypass-firewalls/
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Figure 4.3: Differences between the traditional security perimeter, zero trust and multiple perimeter

REST use a set of architectural principles that help standardise APIs [13], but not secure them [89]. A

common misunderstanding is, that REST secures APIs, which it does not. In fact, it is impossible to operate

secure RESTful APIs [89], although, Fielding states that “REST emphasizes scalability of component in-

teractions, generality of interfaces, independent deployment of components, and intermediary components

to reduce interaction latency, enforce security, and encapsulate legacy systems” [90]. The claim enforce

38



4 Security Challenges regarding Microservices

Figure 4.4: Asymmetric unit strength - Services near to the system boundary, offering APIs to the public,

need a better hardening profile, than services only communicating with other services inside the

system boundary.

security is not specified, neither in the dissertation, nor in other literature [89]. Yarygina observed three con-

straints regarding security in the REST architecture: stateless resource, caching and code-on-demand [89].

Stateless resource constraint: “The more security critical a system is, the more resource states it is likely

to have” [89]. Token based authentication is the method that fits best for stateless authentication but is still

not stateless. It is mentioned that the definition “each request from client to server must contain all of the

information necessary to understand the request, and cannot take advantage of any stored context on the

server” [90] does not leave room for any information being stored on a server and therefore no room for

security [89]. Security relies on information known to participating parties which is not possible in a strict

stateless design. No replay attacks can be mitigated, as well as no nonces, counters or timestamps can be

used to establish cryptography. No server keys could be used to sign or encrypt requests. APIs should

therefore not be build RESTful, but only REST-like.

Caching constraint: The more dynamic and secure private content is transferred the less important caching

gets. Dynamic content is not useful to be cached, as it is dynamic. Secure and private traffic is not wanted to

be cached as it contains information that needs to be forgotten and not stored by further parties. This makes

the caching and its constraint non-relevant.

Code-on-demand constraint: Client script languages like JavaScript are sent to a client and execute code at

the client. This could be malicious code. The biggest concerns are, that clients cannot authenticate received

code and cannot limit the scope of the code. Some security mechanisms like Data Execution Prevention
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(DEP), Address Space Layout Randomisation (ASLR), and sandboxing are helping to mitigate damage

from malicious code, but do not solve the problem entirely.

Another approach is the Enterprise Service Bus (ESB) or Message Oriented Middleware (MOM), which

already introduce some security [26].

4.3.7 Input Validation

Input validation is the most crucial thing when communicating with untrusted entities. Unsuccessful input

validation leads to injection of malicious code or data into your system26. Input validation is crucial for

all input based applications, monolithic services and microservices. Microservices communicate a lot over

the network, which is not trusted, to other entities, which are not trusted (when applying the zerotrust

principle; see subsection 4.3.5), therefore a lot more effort in input validation must be made. APIs mostly

use standardised protocols (e.g.: Hypertext Transport Protocol (HTTP), JavaScript Object Notation (JSON),

Extensible Markup Language (XML), SOAP) for communication and input [91] [92] [93]. Implementing a

REST API would help mitigate a lot of architectural failures [13].

4.3.8 Stay Simple

As explained in subsection 2.1.3 microservices should follow the guideline “Do one thing and do it well”.

When using a DDD (not to be mixed up with Deadline Driven Development) the code base stays relatively

small, which results in little lines of code (LOC) [2]. LOC are statistically correlated to bugs [94]. More

LOC result in more bugs. More bugs result in more exploitable bugs. Therefore a smaller code base results

in a smaller attack surface. Generally, also less code is easier to maintain and leads to a better understanding

of the code to developers. Nevertheless, system architects still need to keep an understanding of the global

system.

4.3.9 Package Dependency

Most software is greatly dependent on poorly maintained software, which was never questioned [95]. De-

pendencies are used, because software projects are getting more complex and developers do not have the

time and resources to write every piece of code themselves, especially when this software already exists.

As the software may not be maintained anymore, or contain unpatched security flaws from the beginning,

using it creates a security flaw in itself27. Container [96] and community library dependent programming

26https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
27https://dlorenc.medium.com/whos-at-the-helm-1101c37bf0f1
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languages like python [97] are especially vulnerable to dependency flaws. To address the patch problem,

a monitoring of used dependencies is useful. Dependabot is a tool, that notifies when new versions of

dependencies are available, and can automatically create new pull or merge requests to a VCS repository.

When properly set up, a pipeline can automatically create, test and deploy the newly created software with

the updated dependency to production. Also, monitoring is needed to detect code which is not receiving any

update anymore. This dependency should be replaced with an active developer community. The monitoring

also needs to catch security advisories of software. When a security relevant bug has been found such an

advisory is sent out, telling users to either update their software version, or it contains a work-around if no

update still exists.

4.3.10 Loose Coupling

Microservices should apply the approach of loose coupling. The services should be as much independent

from other services as possible. The coupling can be measured through various metrics [26]:

• Space decoupling: Interacting parties are not directly connected to each other. They use an interme-

diary to refer to each other.

• Time decoupling: The individual units do not need to be available at the same time.

• Synchronisation decoupling: The interacting parties are still available while interacting.

When decoupling services of space, time, and synchronisation interface coupling gets stronger. How

strongly a service is coupled to other services is measured via three metrics [26]:

• Number of interfaces: The more dependencies a service has, the more interfaces it has.

• Frequency of interface use: The more frequent an interface is called, the more dependent a service is

from another one. Merging these services could be a solution to resolve this dependency.

• Interface evolution: Fast changing services result also in fast changing interfaces. When upgrading

an interface to a newer version, it may break backwards compatibility.

The various interface methods address various coupling metrics. Table 4.3 displays the coherences. REST

does not enable decoupling, only partially for the synchronisation decoupling, but only leads to low com-

plexity. Messaging enables to decouple services, but require a complex infrastructure and a complex service.

4.3.11 Automation

Microservices should, as any other service, be built in a secure and stable way. As part of this, the sys-

tem itself also needs to be stable and secure. When a node stops working or gets corrupted, the system
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Interaction Paradigm
Decoupling Complexity

Space Time ASync Infrastructure Service

REST No No Producer Low Low

Messaging Yes Yes Yes High High

Table 4.3: REST and Messaging compared about decoupling and complexity of implementation [26].

needs to react to this condition and heal itself. A new node should be built to replace the old one. To mo-

tivate developers to regard this situation Chaos engineering28 like Netflix’ ChaosMonkey are set in place.

ChaosMonkey kills units randomly to encourage developers as well as system engineers and administrators

to automate node recovery. This automated establishment of new units has, beside system stability, two

positive side effects: introduction to permanent code changes without downtime and increased security by

mitigating persistence [2]. When regularly deploying units and replacing old ones, employees are used to

regular changes and introduced automation to this process which enables the introduction of new code easy

to existing infrastructure. Also through the permanent rebuilding, attackers which inserted themselves in a

node or introduced a malicious node will get kicked out of the system as soon as the malicious node will get

replaced with a new one. Note that attackers that already hacked a system can do this again if nothing gets

changed. So a node rebuilding only removes attackers temporarily. Also, if multiple units are affected, the

attacker can spread from old units to new ones like a virus, because only a few units are rebuilt at a time,

which gives time to the attacker to recover.

4.3.12 Isolating Units

To limit damage, when units get compromised, microservice units should get isolated as much as possible

from other services. This means only letting units communicate with services they are intended to com-

municate with, and to only let them share data which is necessary: “share nothing principle and strict data

owning” [2]. This principle correlates with the zerotrust approach (see subsection 4.3.5) and needs increased

attention when when implementing automated deployment regularly (see subsection 4.3.11). When isolat-

ing units as described, with units getting killed and rebuilt, the risk of data loss is ubiquitous. Mirroring units

could mitigate this risk. Also, microservice systems need to tolerate partial failures. The systems should

detect outages and failure automatically and limit the propagation to prevent cascading failures [24] [27].

28https://en.wikipedia.org/wiki/Chaos_engineering
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4.3.13 System Heterogeneity

Heterogeneous systems, meaning the usage of various OS, software stacks and libraries, mitigate low-level

exploits [14] and require attackers to have a fundamental and embracive understanding of used systems to

exploit all required owns [98]. This often narrows attackers down to big intelligence services due to lack of

time, personnel and money resources of other attackers. Microservices support heterogeneous systems by

design (see subsection 2.2.1). Otterstad et al. suggest to combine isolated microservices and diverse software

to increase security [14]. As visualised in Figure 4.5, they identify three different fundamental attack phases

compromising microservice systems: The initial attack, the sandbox escape and the lateral exploit trying to

compromise the remaining existing system. The initial attack compromises a service. This service is used as

a host to escape the sandbox, e.g. a hypervisor, and compromise the upper layer via the second attack. Once

the hypervisor is controlled, all layers below are also viewed as controlled (see section 4.1). These means

once a sandbox escape succeeds, the complete machine with all virtual machines, containers, etc. on this

machine is compromised. The third attack is the lateral attack. This attack is executed from a controlled host

and tries to compromise a host on the same layer. It is desired to compromise services on other machines to

further distribute through the network.

System heterogeneity has the goal to snooker an attacker and provide a defender with more time [14]. Sys-

tem heterogeneity is used to make attacks statistically less efficient and therefore requires an attacker of the

knowledge of multiple systems and exploits. Using several OS, various programming languages, multiple

cloud providers, hypervisors, compilers, ASLR versions, and different backend services helps mitigating

these attacks and are most likely a big impact when limiting successful attacks to a limited set of services.

4.3.14 Reduce Inter-Service Communication

Microservices should reduce their communication interfaces to a minimum. Only relevant information

should be exchanged. Also the relationship between services needs to be a minimum [14]. As seen in

Figure 4.6 service A can communicate to service B and service B can communicate to service C, service A

does not need to communicate to service C directly because it could communicate to it via service B. This

results in a lower performance and more complexity but also in a lower attack surface. This statement is in

fact disputed. More complexity leads to more LOC and therefore to more bugs (see subsection 4.3.8) and it

reduces the code comprehension (see section 2.2.1).
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Figure 4.5: The three different attack phases when compromising a modern system.

Figure 4.6: As service A can communicate to service C over service B, it does not need a direct connection

to service C.

4.3.15 Securing the Service Mesh

“Service meshes have emerged as an attractive DevOps solution for collecting, managing, and coordinating

microservice deployments” [46]. Service meshes allow the separation of microservice relationships from

the service code into configuration files. Service mesh tools allow to deploy microservices automatically

once the required dependencies are available. Service meshes automate service discoveries and traffic flow

management29. Service Meshes can be seen as an extended container orchestration tool. The service mesh

is therefore a critical infrastructure component which represents a lucrative attack goal.

As the service mesh is an application in a microservice environment, most standard application and mi-

croservice security measures need to be applied. This includes securing the application code and binary

29https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
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stack, as well as securing the network stack. Hahn et al. explicitly name message encryption, network

ACL [46]. Furthermore they recommend to treat configuration sets as secrets, so only authorised personnel

and services is able to view and edit things.

4.4 Applying Security to Microservices

The last section described some fundamental thoughts on microservice security, which differ from mono-

lithic services, although microservice security thoughts are already influencing overall security thoughts,

including monolithic services. The following section defines some best practices which should be im-

plemented when working with microservices. Most of the following practices derive from the zerotrust

principle (see subsection 4.3.5).

4.4.1 Service Authentication via MTLS

The usage of Mutual Transport Layer Security (MTLS) with an own PKI is highly recommended. A TLS

connection means authentication of one party, while MTLS means authentication of all participating parties.

A PKI is build and automatically assigning certificates to new units to identify them. The given certificates

can be used to differentiate different kinds of units (functional, management, testing, etc.)30. Also these

certificates are used to authenticate units to each other and encrypt traffic between them. The issuing process

works as followed [2]:

1. A new Certificate Authority (CA) with a key pair is created.

2. A hash of the root CA and a random secret is packed into a token which is provided to all units when

deployed.

3. The node generates a Certificate Signing Request (CSR) using the token and submits it to the issuing

CA.

4. The CA verifies the identity of the node and issues a certificate to it.

It is highly recommended to automate this process, as it enables to frequent exchange of certificates (mostly

between two to three months). Also, not all units should change their certificate simultaneously. Docker

Swarm also enables to rotate the issuing CA certificate. To connect to the CA the units establish a TLS

connection (the CA already has a certificate to identify itself), when connection to other units, the units now

can authenticate themselves and establish a MTLS connection (see Figure 4.7). A second way of providing

certificates to microservice units is the usage of long and short living certificates [99]. The long living

30https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
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certificates are stored into a security module (e.g.: TPM) and used to request short living certificates. These

short living certificates are used for all the communication except for the certificate issuing. Issuing short

living certificates mitigates the problem of certification revocation [100].

Figure 4.7: A trusted CAs issue certificates to containers to let them communicate over MTLS.

4.4.2 User Authentication via Token

Microservices will most certainly interact with user queries. This requires them to know the user and, more

important, the state and authorization of the user query. Microservices should know if a user query was

authenticated and the users role in terms of authorization [2]. Also every service should do this on their

own, as microservices tend to hand over requests to other microservices. An often used example of this

method is the propagation of requests with authentication and authorization via tokens in HTTP cookies. As

cookies are client saved and handled entities, they cannot be trusted and must be handled with care [101].

Other standards have evolved to be around the JSON standards; JSON Web Signatur (JWS), JSON Web

Encryption (JWE) and JSON Web Token (JWT).

Yarygina et al. present an own token architecture which will be presented in the following [2]. In general

token-based architecture allows the propagation of a request in a secure and decentralized manner. They

cause an extra service, a reverse Security Token Service (STS), generating security tokens for internal usage.

They introduce the service to limit the expiration time of the token in its body. This behaviour introduces new

vulnerabilities as malicious units can introduce false tokens with a higher expiration time than expected. The

desired behaviour should be that all units know the maximum expiration time. As seen in Figure 4.8 token

validation is a mandatory first step. It visualises a generic token based authentication. (1) A user request

enters the API Gateway and gets redirected (2) to the user authentication service. The service authenticates

the request and (3) requests a security token for this request (4) which gets returned by the reverse STS. The
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Figure 4.8: A generic token based authentication.

request is passed back to the API gateway along with the token, which passes the request and token through

the functional services. This token is not given to the user. The security token in this example is not given

to the user, but stays in the system. This increases security as well as system load. If a generic security

token were generated and given to the user, this token could be used to authenticate the user in a given time

frame (depending on the expiration time of the security token) without the need of contacting the reverse STS

again. Also a security token given to the user should only include a timestamp which will be used to calculate

the expiration by an owned service. This fits the second principle of designing distributed systems: A service

will make decisions based on local information [24]. Already existing protocol standards as OAuth2.0 and

OIDC can be used to delivery inter service security through tokens. Token based authentication methods

need O(1) server side to process N users which provides a high scalability [89].

To reduce traffic to authentication and authorization services, the security token could be given to a user for

further usage. This token must include a valid time frame and an authorized context. After initially getting a

token, the user directly requests a functional service via an API without the need to permanently request the

authentication and authorisation services. This could be accomplished via JWS. A signed token containing

already encountered data needs to be validated from the resource service. It will check the signature and

grant the user resources based on the described rights. This approach requires the functional services to

know the issuing certificate. Automatic enrollment is recommended. This token must have a short validity,

around ten minutes, to limit damage, if the token gets misused in any way (stealing, hijacking, MITM,
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etc.). CRL will not scale to such an amount of issued certificates [100]. Figure 4.9 represents such an

architecture. It shows a signed-token authentication and authorisation. (1) The user sends a login request to

the gateway. (2) The user auth server authenticates and authorises the request, creates a token and (3) tells

the CA to sign it. (4) The CA returns the signed token to the user auth server which returns it (5) via the

API gateway (6) to the user. Now the user can request resources directly (7) via the gateway (8-18) from

functional services as long as the signed token is valid, without the need of requesting the user auth again.

Each service validates the token itself via the signature of the token. Requests 9 to 16 represent requests

between functional services and are not printed for visibility reasons.

Figure 4.9: An Authentication and Authorisation service using signed token.

A big problem in these approaches is the clock synchronisation problem in distributed systems [102]. Time

in distributed systems must be synchronised correctly, with the need of low resources, and should stay within

a tolerance. Another problem is that these tokens are reusable. To protect them from replay attacks they

should get transmitted through secured connections only to trusted peers, e.g.: a MTLS connection. This is

highly risky why the token approach should be changed to a challenge-response approach. A third problem,

as in any asynchronous cryptography, is the secrecy of the private key. As soon as the private key is known

to an attacker, the system is to be seen as compromised.
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4.4.3 Ticket based authentication

A ticket based authentication like Kerberos31 is not recommended in a microservice context. A Kerberos

needs a Ticket Granting Server (TGS), an Authentication Server (AS) and a Service Server (SS) to work.

The TGS and the AS need a shared storage to access a key database. This database contains all client and

server keys which were used to encrypt granted tickets. Also Kerberos relies a lot on a very good clock

synchronisation of all participants. To synchronise time in a network, Network Time Protocol (NTP) is

used. It tries to eliminate time differences caused by participants, physical distances between participants

and used physical network carrier. Synchronising time in a distributed system brings a lot of problems and

does not scale well [102]. The described problems are simply limited to scalability, not security.

4.4.4 Service Authorization

Authorization of services is crucial to limit access of the services to their intended behaviour. Digital cer-

tificates could be used to authorize services [103] [104]. This is achieved by creating a multi-hierarchy

PKI [33]. One root CA is accountable for all issued certificates in this system, granting authentication. A

level below, every microservice type has its own issuing CA providing authorization, which can be named

as realm. Microservices define which realm is allowed to communicate with by adding issuing CAs to their

trust list. To allow access from all services, simply add the Root CA to the trust list. This approach is visu-

alized in Figure 4.10. The Root CA issues certificates to its issuing CAs but never to other services (each

CA can be built as a microservice itself). The issuing CAs issue certificates to their assigned services in

their realms. The services define which service realm is authorized to communicate with it. Additional trust

levels are achieved by introducing further CAs (Functional A CA issues a signing certificate to a functional

A.1 service and functional A.2 service CA). As an example, the management services accept connections

from other management services, but not from functional services. Functional A services accept connections

from functional B services, but not vice-versa. As all certificates have a limited expiration time and as well

certificates, as well as CAs need to be renewed on a regular basis, it is highly recommended to automate

such a configuration.

4.4.5 User Authorization

To authorize users, multiple methods have been developed. Most common, modern approaches are Role

Based Access Control (RBAC) and Attribute Based Access Control (ABAC). Yarygina et al. propose to use

31https://web.mit.edu/kerberos/
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Figure 4.10: Service authorisation using Certificate Authority.

ABAC in microservice context to grant fine grained access to APIs [2]. Roles for RBAC could be transported

via the security tokens of the authentication phase.

4.4.6 User authentication and authorization with existing frameworks

Already existing frameworks as OIDC32 or OAuth33 can be implemented in a service conveniently without

the need to invent something new. These frameworks are also already widely adopted and tested for security

and performance.

OAuth has two versions, OAuth 1.0 and OAuth 2.0. OAuth is used to authorize third party applications to an

existing account. OAuth provides access to data of a user with the users permission to an application without

the need of providing a password. Version 1 differs from version 2 as it still supports client request signing.

As OAuth 2.0 is the successor of OAuth 1.0, the usage of the second version is strongly encouraged.

OIDC is the successor of OpenID and combines it with OAuth. OpenID was a provider of identities. A

user could create an account at an OpenID provider and use this account to login everywhere else. With

the combination of OAuth, also the authorization part is covered in OIDC. OIDC enables users to control

every application compatible with a single account at an OIDC provider. These providers are referred to as

Identity Provider (IdP) whereas the applications and webservices relying on the provider are referred to as

Service Provider (SP).

32https://openid.net/connect/
33https://www.oauth.com/
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Both, OAuth and OIDC rely on TLS for their confidentiality and integrity [89]. They provide scalability

because they use server signed tokens to authenticate and authorize clients. Big companies already act as

IdP, including Facebook (Login with Facebook), Twitter, Microsoft, Gitlab, Orcid, etc. When developing

new services, the decision to use already existing accounts of one of these services can be made. Figure 4.11

may help decide the right authentication and authorization method. This decision tree helps to decide which

authentication and authorization method is the right one for a service. It ends with either implementing

OIDC as a consumer or a provider or developing an own method based on principles described in this

chapter.

Security Assertion Markup Language (SAML) [105] is an older alternative from 2005 to OIDC based on

SOAP and XML.

Figure 4.11: Decision tree to decide which implementation of user authentication and authorization should

be used.

4.4.7 Security Monitoring

A security monitoring system watches the output of all units of the same service and looks out for anoma-

lies [106]. Yarygina et al. propose a security monitor in form of a Machine-Learning (ML) game en-
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gine [107]. This engine works similar to an IDS [108]. Each microservice reports all inputs and outputs

to the engine, also topology changes are reported [107]. The engine calculates a model of communication

and adapts it with every topology change. Three different states can be assigned to each unit; benign, under

attack, and compromised. Benign means everything is normal, under attack states that the unit is under

attack at the moment, and compromised means a unit is suspected to be or is compromised by an attacker.

The engine runs a minimax algorithm34 from game theory to decide which actions to take. The following

actions are allowed [107]:

• Restart and Rebuild: Restarting/rebuild the service with the same configuration will have the lowest

impact on the system but also tends to fail to mitigate attacks. An attacker could be persistent on a

service, or simply repeat the same attack again to gain control of a system. If the problem persists, a

rollback to an older image of the unit may help.

• Recompilation and Rewriting: Mitigate attacks through heterogeneity and recompile or rewrite bi-

naries with different arguments [14]. To rewrite a binary automated special compiler support is

needed [109]. Recompiling effectively mitigates replay attacks.

• Diversification of cloud provider: Moving a service to another cloud provider mitigates low level

attacks as this will imply usage of a diverse hardware and virtualisation software (see section 4.1).

Also, it changes or removes the access of a cloud provider and enables another one to access the units.

• Scale up and down: Similar to Recompilation and Rewriting, several units of the same service but with

different arguments are spawned. These services report their output to a master node which checks

the output for anomalies. If a malicious unit is detected, it gets recompiled with new arguments. This

is seen as self healing. Figure 4.12 shows such a behaviour. This action can also be implemented

as a stand-alone solution without the game engine. The monitoring system watches the output of

various services and notices anomalies in responses. The monitoring system is entitled to recompile

the respective service with other compiler arguments and replace it with the new compiled image.

The monitoring system can also be attached to the network like an IDS (e.g.: mirrored switch-port),

therefore not be a single point of failure when it crashes.

• Split and merge services: A unit will be split at the function level. A binary attack would be mitigated,

as previously existing paths were rebuild. This is a purely theoretical approach as the required tools

for automated code modification do not exist yet.

• Isolation and Shutdown: Stops the service permanently. This approach is not applicable in high-

availability environments. Noureddine et al. showed that permanently shutting down a service signif-

34https://en.wikipedia.org/wiki/Minimax
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icantly delays an attacker [110].

Monolithic services allow to rollback, rollforward, isolate, reconfigure, and reinitialize the system [111],

but, as seen, microservices allow more automated defense action. This game engine and the master node of

Scale up and down need to become part of the infrastructure and orchestration.

Such a model has a much lower latency than humans when responding to alerts and a more objective and

detailed view on a system [107]. As humans need time to resolve and address the issue and react, the game

engine does it instantly. To address the resource usage of this complex algorithm, x will be the depth of

the decision tree and y the count of legal moves in the minimax algorithm. Therefore time complexity

results in O(bm) while space complexity results in O(b ∗m). When sorting the results for the alpha-beta-

pruning algorithm time complexity can be reduced to O(b
m
2 ). Also, a real world example will limit itself in

granularity due to space and time complexity.

Figure 4.12: Automated low level security monitoring and response

4.4.8 Smart Endpoints and Dumb Pipes

As already described, the approach of loose coupling and decentralisation in microservices leads to a lot

of network traffic. Therefore, there is a need for error detection and error correction of network traffic in

microservices. Lewis et al. propose control all network flow inside the services [112], therefore act similarly

to the network approach of the entire internet. This approach could be implemented via REST, Enterprise

Service Bus (ESB) or Message Oriented Middleware (MOM). MOM protocols establish a pipe to transmit

messages. Messages are stored into a pipe and are processed one after another using the First In - First
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Out (FIFO) principle. Senders aren’t awaiting complex return values but simple acknowledgments that a

message has been received. The result will be returned with another pipe after completion. Common imple-

mentations are Apache Kafka35 and RabbitMQ36. MOM and ESB does not work with HTTP messages, as in

a REST architecture, therefore implementations of the chosen protocol should be available in every used OS

and programming language. As already described in subsection 4.3.6 REST lacks security, therefore MOM

is recommended. Common MOM implementations support MTLS for authentication and traffic encryption

out of the box [26]. Nevertheless, when establishing system heterogeneity (see subsection 4.3.13) it comes

with decreased performance.

4.5 Privacy Concerns of Microservices

Privacy is a topic not clearly described often. Perra describe privacy as the state or condition of hiding the

presence or view [113]. As microservices are often deployed in a cloud environment, several privacy issues

arise (see subsection 4.1.3). The following sections explain privacy problems of microservices in a cloud

context and privacy problems of the microservice architecture itself

4.5.1 Cloud Privacy Concerns

Privacy concerns of the cloud are a barrier in adopting microservices [114]. As the advantages of microser-

vices and other marketing measures increased the push of customers into the cloud, the privacy issues of the

cloud are still unsolved. There is still a need for the storage of confidential things somewhere. “[...] privacy

is needed to attain the data, user identity and controls” [13]. As microservice systems often include multi-

ple IdP and SP where a lot of sensitive data is transferred, there is definitely a need for privacy [47]. Cloud

privacy is a huge and complex topic, which will not be discussed in detail in this work (see subsection 4.1.3).

The marketing teams of cloud providers help out, offering encryption in some formats, but this does not

solve the problem of privacy, where cloud providers should not know that some data even exists. Also, a

common misconfiguration of cloud encryption is to store the used key in the cloud storage [115]. This is

often chosen because it is convenient, but it enables cloud providers to decrypt the data.

The author of this thesis proposes to split data and calculation to various cloud providers and only combine

them at on premise hardware. Therefore cloud providers do not know the full data and calculation. The

data and stored and the calculations executed in one cloud environment can be seen as garbage, as they

35https://kafka.apache.org/
36https://www.rabbitmq.com/
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only add up when correlated and encrypted at the own data center with a key stored at the own data center.

This enables to use the advantages of rapid scaling of cloud infrastructure and still preserves privacy and

enhances security.

If this approach is applicable in the field and which pitfalls need to be regarded is unclear. This is why

further research definitely needs to happen in this field, which can also result in the fundamental failure of

privacy in a cloud environment.

4.5.2 Architectural Privacy Problems

Microservices themselves also have a privacy problem which has not been researched well. Vistbakka et

al. tried to specify the problem via an example in the medical fields [29]. A patient gets diagnosed with

a disease in hospital A. This hospital stores the patient’s data and medical records in it’s own datacenter.

The hospital advices the patient to consult a different hospital B for a cure. To make this more clear, we

assume that, Hospital A is in the home country, hospital B is abroad. To cure the disease, Hospital B needs

the medical records of the patient and receives them from the datacenter of hospital A. Also, hospital A

forwards the data to other data consumer, such as insurance agencies and pharmaceutical companies. This

behaviour is visualised in Figure 4.13. It also shows non-authorized access to this data as an example.

Analogously to the physical world, when the patient give data to hospital A and it redirects it to a data

center, neither the patient nor hospital A own this data anymore and cannot control where it goes. Monolithic

programs have less problems in handling data than microservices do. The data-intensive, distributed nature

of microservices has an explicit problem with data privacy as a service does not control the data once it

passes it to another one. As the data transfers in this example do not mean that these privacy violations are

intentional, this microservice architecture cannot monitor the satisfaction of privacy constraints and cannot

prevent a violation of them. Each patient, and furthermore each user and service, must be able to decide to

whom and where to share data and microservices as the tool must ensure that these guidelines are executed.

To make a first step and address this problem, Vistbakka et al. defined a privacy preserving microservice

system [40]. They defined microservices privacy-preserving if they only process data they are entitled to

and it they only share data, which the recipient is entitled to process. (Service A only uses and requests data

which it is allowed to use and only shares data with service B which service B is allowed to use. A complex

formal description is found in the cited paper [40]. Overall, this definition could easily be adapted to match

every service, business process and even human behaviour.
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Figure 4.13: Data sharing in the medical fields as an example, visualising authorised and unauthorised data

access.

4.6 Decision helping guide

Finally, we present a guideline, if one should use microservice or monolithic services, as well as a guideline

on how to secure microservice, based on the challenges and solutions already described.

4.6.1 Monolithic service or microservice?

The decision to create a microservice should be deliberated carefully. Why is there a need to create a

microservice instead of a monolithic service? There are two different types of created microservices; the

ones that are originally created as microservice and the ones that are transformed from monolithic services.

To decide if one should create a microservice from scratch, the following assets and properties should be

answered:

• Scalability: Microservices are all about scalabilty. Is there a need to scale services up and down on a

frequent, irregular basis. Is there no possibility to let a service idle due to limited resources or financial

thoughts?

• Heterogeneity: Is there a need for several OS distributions or programming languages?

• No on premise: The offered service is a hosted service, not software to sell. Usually this means, the

company sells PaaS or SaaS services. The customers will be forced into a cloud aspect and has no

possibility to host this service themselves.
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If these questions are positively answered, a need for microservices can be seen. Scalability is still the

strongest argument to adopt a microservice approach.

Bear in mind, that microservices need a lot more infrastructure in comparison to monolithic services [25] and

need a specialised DevOps team to maintain the infrastructure. Creating microservices, means permanently

maintaining an offered service.

When deciding to transform a former monolithic service into a microservice, it rises further security aspects.

Monolithic services may include code and routines that were never meant to be public. When transforming

them, these sensitive data and routines must be located and taken into account!

4.6.2 Checklist of microservice security

The following checklist should be a guideline on what needs to be considered when creating microservices.

It is based on the proposed layered principle (see section 4.1). The first three layers, hardware, virtualisation,

and cloud play a big role in the overall security and definitely needs to be considered as a business concept,

but cannot be adjusted when creating microservices.

The first layer that is directly influenced by microservices is the communication. Microservices communi-

cate a lot and therefore an established trust and secure communication is the key. Consider the following:

• Network isolation and microsegmentation: Limiting the network partners of microservices and limit-

ing access to them greatly reduces the attack surface of a microservice.

• Security perimeter shift - zero trust: Combining the traditional perimeter security approach with the

uprising zero trust principle greatly increases security of each service. Consider also, that zero trust

relies on a correct configuration of all participating services.

• Reduce inter-service communication: Microservices should only communicate about the absolute

minimum and should only rely on an absolute minimum of microservice relationships. Beware that

this increases service complexity and contradicts the microservice privacy aspect.

• Usage of TLS and MTLS: The usage of transport encryption via TLS enables confidentiality and

integrity between services and can be used as an authentication and authorisation mechanism between

services.

• Usage of authentication and authorisation: Services must be authenticated and authorised. This can

be accomplished via the usage of TLS, existing frameworks like OAuth or OIDC, or security token.

Similar to services, users must be authenticated and authorised: OAuth or OIDC, or security tokens.

The recommended way is the usage of TLS for confidentiality, integrity, and service authentication

and authorisation as well as the usage of OIDC for user authentication and authorisation.
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The next layer is about the service itself:

• Input validation: Microservices mostly rely on the container architecture, which shares resources on

a node with other container. Also microservices communicate a lot over a network. Therefore no

external loaded information, either over network or file system is a trusted source of data. Consequent

input validation is the key.

• API protection: Microservices expose a lot of functionality to other services or the public. These

exposed interfaces must be protected.

• Package dependency: Most modern programming languages rely on the usage of community libraries.

Containered microservices even increase the fact, that some container images rely on other images.

Therefore a lot of community code could be present in the resulting software, which contains already

known flaws. A dependency monitoring and update management needs to be implemented.

• Loose Coupling and isolating units: Microservices should work on their on and only share data when

absolutely necessary. They must not rely on shared infrastructure. In further consequences, microser-

vices should be isolated from each other to limit possible damage, when being attacked.

• Heterogeneity: Microservices should make use of their relative ease of system and code heterogeneity.

This principle could also be automated. Heterogeneity reduces the impact of low-level attacks.

The last layer is about orchestration:

• DevOps protection: The working environment of the DevOps team requires a proper security evalua-

tion. Never store credentials in plain text, nor save them to VCS, in fact establish systems, where there

would be no need to do so. Isolate the development and build environments from production systems.

As automation is the driving principle in the DevOps area, these automation processes need to be

secured and monitored to prevent intrusions into the software development and prevent the delivery

of malicious software.

• Security monitoring: Monitor in production services and locate anomalies in their network traffic.

Anomalies could be a sign of a compromised service. Automated recompiling and redeploying of this

service could mitigate and revert a successful attack.

Overall, the concepts of the CIA triangle, confidentiality, integrity, and availability should lead the security

thoughts. Also, the microservice itself should be simple and easy maintainable.
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The main challenge, when designing a secure system, is to initially establish trust between the disparate ser-

vices. As shown, there is no standardized way to establish security in microservices. Existing solutions are

either closed source, or proprietary and therefore not portable to other solutions. In general these concepts

are poorly documented and poorly understood. Also an independent, widespread performance cost overview

is missing. Yarygina et al. implemented an own system and observed a performance decrease of 7% when

using security tokens and a decrease of 4% when using MTLS as opposed to not using any security at all [2].

When taking into account that microservices can perform up to 80% lower than monolithic services on the

same hardware [25], this is a relatively high value, so they propose reusing existing connections wherever

possible. Yarygina states that in some cases the operational overhead of microservices is not acceptable and

unnecessarily expensive and needs to be evaluated if a program really needs to be created with a microser-

vice structure [26]. Also, often monolithic services are transformed into microservices without any need.

Monolithic services are still useful as they have a completely different architecture and therefore perform

differently. Used CAs and the token services should run in a hardened environment. Many authors suggest a

TPM or SGX environment, even though there is no guaranty, that these are in place in a cloud environment.

As seen in section 4.1, when applying microservices at cloud provider, the applied hardware security only

relies on trust into the cloud provider, as there is no proof they establish these features. In general, critical

services and services offering APIs to the public (subsection 4.3.5) should be hardened with an extra focus:

The nearer the service is to the system boundary, the more security it needs.

As microservices communicate a lot over the network, a focus on network security should made. This

complies with the challenge of establishing trust between microservices. Network isolation and a flexible

Software Defined Network (SDN), as well as microsegmentation play an essential role. Additional mi-

croservices should communicate over a trusted and encrypted channel, using TLS or MTLS in combination

with a self-hosted CA. Precautions needs to be made, as hosting an own CA is not a trivial thing to do

(Lifetime of certificates, Issuing process of certificates, CRL policies, Security of the CA itself, etc.).

Analog to the saying “never do your own crypto”, the author recommends the usage of already existing,
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established authentication and authorisation protocols and implementation rather than creating a new one

(OIDC; see subsection 4.4.6). When creating a new architecture a signed token approach (see subsec-

tion 4.4.2) is the most scalable solution.

As seen in subsection 4.3.4, most of DevOps related attacks, can be mitigated using the least privilege

method when assigning user rights, isolating build processes and ensure confidentiality and integrity using

encrypted communication channels, so therefore apply general security best practices.

System heterogeneity is a property that is not difficult to achieve when using microservices and helps a

lot to mitigate low-level attacks. System heterogeneity in terms of automated infrastructure can even be

automated up to a certain extend (see subsection 4.3.13 and subsection 4.4.7). System heterogeneity is

often only regarded as system distribution heterogeneity. As already explained, Container technology only

enables the variation of distributions over a shared kernel. Kernel heterogeneity increases complexity, as

one node can only host one kernel with multiple container sharing the same kernel and the orchestration

solution must be able to correspond with multiple kernel solutions.

Sensitive data handled by cloud microservices should be reduced to an absolute minimum, as cloud providers

cannot guarantee any privacy in their environment (see subsection 4.1.3 and section 4.5). Privacy is defined

as someone not knowing certain data exists.

Microservices reduce complexity of the services themselves but require a complex infrastructure to have

some security features enabled. This infrastructure could be more complex than the infrastructure needed

for monolithic services. As security in monolithic services often comes while programming the services,

microservice security comes mostly with extra work that must be done. This leads to fewer security features

or none at all enabled by default, as it will cost time and human resources to create security measures, but

will not make any money directly.

Also, a study showed that the agile approach could decrease the time to market of new code to 20 min-

utes [116]. This incredibly fast deployment and the increasing numbers of automated attacks create a need

to secure the testing and deployment road to avoid delivering erroneous or compromised code and to auto-

mate security concepts and features, and also, there emerges a need of self protection like it is done via the

methods described in this works.

Overall, microservice security is a field not well researched. As there is no standard or approved guide-

line in building microservice systems, everyone is basically just working on how they think it works best,

which is most likely a bad idea. This leads to architecture, that may undermine the benefits of choosing

a microservice approach in the first place and to security issues, as only a few people objectively check

this architecture and these security measurements. The main security challenges, different from monolithic
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security challenges are adoption of automation as an architecture, securing the communication, cloud con-

cerns, as well as the distribution of services. As the software gets automated, also the security design and

approach needs to strongly depend on automation. Communication between different services is a key part

of a microservice architecture which needs to be secured. The distribution of services creates a need of an

amount of authenticating and authorising various software components vice-versa in the system which is

new to software development.

Also privacy in a microservice context has not been researched well yet, although a formal definition already

exists (see subsection 4.5.2).

5.1 Future Work

Further to the already discussed topics, more research about protection of microservice orchestration as well

as the service mesh needs to be done. As orchestration resp. service mesh is the control of the system, when

being compromised, it enables attackers to compromise the whole system (see subsection 4.1.6).

Another statement was that microservice relationships should be reduced to a minimum (see subsection 4.3.14).

As this increases complexity as more services are simply used as proxies, it therefore also increases LOC

and errors being made (see subsection 4.3.8). There is also a greater dependency on other services. These are

two paradox statements which need further research, if they keep themselves in balance or if one statement

is not true or negligible in specific situations. Furthermore, it is against the privacy definition of Vistbakka

et al. (see subsection 4.5.2), as services get in contact with data, they don’t need to.

Otterstad et al. argue that microservices need to be spawned automatically with different compiler argu-

ments (see subsection 4.3.13). These services should be monitored for anomalies and rebuild with different

arguments when necessary (see subsection 4.4.7). As these services are not tested and are only monitored

to watch how they perform in production, further research needs to be done if this really works and what

should be best practices to achieve a high detection rate and to see which arguments must be used in which

order to successful mitigate attacks.

Also, the rise of microservices and automated service deployment lead to the development of Software

Defined Network and microsegmentation. The field is not new and widely used, but only little research has

been done on how SDN affects network security and microservice security in particular.

Further research definitely needs to take place about privacy in a cloud context. Sensitive data is transferred

to cloud storage and services, often on situation wherin the cloud providers should not even know that this

data exists, but privacy in a cloud environment is not possible yet.
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A big topic is the bad performance of microservices, compared to monolithic services; especially when

some security is applied. This operational overhead needs to be resolved to increase security usage and

acceptance in microservices.

Apart from the privacy aspects of the cloud, the privacy approach in microservices have not been researched

well yet. At the time of writing this work, the DBLP1 only returned four results, all in medical fields, when

searching for microservice privacy. There is definitely a huge need for further research in the basics of this

field.

Overall, there are a lot of introduced approaches to work with microservices, but there are still no guidelines

or best practices. Most of the proposed approaches have not been surveyed yet. After around 13 years of

microservice development, a guideline, best practice, or even a standard specification would help a lot to

build secure microservices.

1https://dblp.uni-trier.de
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